Изменения

Перейти к: навигация, поиск

Явление Гиббса

21 байт добавлено, 18:25, 26 июня 2012
Нет описания правки
<tex>s'_n(x_{m_n}) = 0</tex>, <tex>x_{m_n} = \frac\pi{m_n}</tex>, <tex>2\left[\frac{n+1}2\right] = m_n</tex>
Путём дифференциального исчисления проверяем, что <tex>x_{m_n}</tex> {{---}} точка максимума.
<tex>s_n(x_{m_n}) = \frac2\pi \int\limits_0^{x_{mnm_n}} \frac{\sin m_nt}{\sin t} dt=</tex> (заменим переменную на <tex>m_n t</tex>) <tex>= \frac2\pi \int\limits_0^\pi \frac{\sin t}t \frac{t/m_n}{\sin t/m_n} dt</tex>
<tex> \frac{t/m_n}{\sin t/m_n} \xrightarrow[n \to \infty]{} 1</tex>, <tex>\frac{t}{\sin t}</tex> возрастает, значит, к этому интегралу применима [[Предельный переход под знаком интеграла Лебега | теорема Лебега о предельном переходе под знаком интеграла]]:
<tex>s_n(x_{m_n}) > s_{n+1}(x_{m_{n+1}})</tex>
<tex>s_n(x_{m_n}) \to \frac2\pi\int\limits_0^\pi\frac{\sin t}t dt \approx 1,17\ldots</tex>
Смысл полученного в следующем: функция пройдёт через точку максимума <tex>>1</tex> и резко пойдёт в ноль. Явление {{---}} явление Гиббса, он обнаружил физический эффект, связаный с математическим поведением этих сумм.
152
правки

Навигация