Изменения

Перейти к: навигация, поиск

Альтернатива Фредгольма — Шаудера

2315 байт добавлено, 16:24, 31 мая 2013
Новая страница: «<tex>X = C[0;1]</tex>, <tex>K(u,v)</tex> непрерывен на <tex>[0;1]^2</tex> <tex>A(x,t)=\int\limits_0^1 K(t,s) x(s) ds, x(s) \in C[0;1]</tex> A — к...»
<tex>X = C[0;1]</tex>, <tex>K(u,v)</tex> непрерывен на <tex>[0;1]^2</tex>

<tex>A(x,t)=\int\limits_0^1 K(t,s) x(s) ds, x(s) \in C[0;1]</tex>

A — комплексный оператор (<tex>A \colon [0;1] \to [0;1]</tex>)

Интегральные уравнения Фредгольма: <tex>f(t) = x(t) + \lambda \int\limits_0^1 K(t,s) x(s) ds</tex> в <tex>C[0;1]</tex>.



X — B-пространство, <tex>A \colon B \to B</tex>, A — компактный. <tex>T = \lambda I - a</tex>

Задача: когда <tex>Tx=y</tex> разрешимо?

<tex>y = \lambda x - A x</tex> — операторные уравнения второго рода (явно выделен I). Уравнения первого рода (<tex>y=Bx</tex>) решаются гораздо сложней. Объясняется это достаточно просто: <tex>y = \lambda x - A x = \lambda (x - \frac 1 \lambda A)x, \frac 1 {|\lambda|} {\|A\|} < 1 </tex>, следовательно, по теореме Банаха, <tex>I - \frac 1 \lambda A</tex> непрерывно обратим, следовательно, при достаточно больших <tex>\lambda</tex>, <tex>y=\lambda x - A x</tex> разрешимо при любой левой части, причём решения x будут непрерывно зависеть от y. Интересна ситуация при <tex>|\lambda| < \|A\|</tex>. В случае комплексного A ответ даёт теория Шаудера.

Далее будем считать <tex>\lambda = 1</tex>. <tex>T = I - A,~Ker~T = \{x|x - Ax = 0\} = \{x|x=Ax\}</tex>, таким образом, ядро T — неподвижные точки A.
<tex>\overline V</tex> — единичный шар, <tex>Y = Ker~T</tex> — подпространство X. <tex>dim~Ker~T = + \infty,~\overline W = \overline V \cap Y \Rightarrow \overline W = A \overline W</tex>. Но так как A — компактный, <tex>\overline W</tex> — компакт в Y, но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если A — компактный, то <tex>dim~Ker(I-A) < + \infty</tex>.
Анонимный участник

Навигация