Изменения

Перейти к: навигация, поиск

Альтернатива Фредгольма — Шаудера

166 байт добавлено, 22:42, 1 июня 2013
Нет описания правки
<tex>y \in R(T), Tx=y, \forall z \in Ker~T \Rightarrow T(x+z) = y</tex>. Значит, все решения уравнения <tex>Tx=y</tex> записываются в форме <tex>x=x_0+z</tex>, где <tex>x_0</tex> — одно из решений, z принадлежит <tex>Ker~T</tex>. Но <tex>dim~Ker~T < + \infty \Rightarrow Ker~T = \mathcal{L} \{ e_1, \ldots e_n \} \Rightarrow x = x_0 + \sum\limits_{k=1}^n \alpha_k e_k, \alpha_k \in \mathbb{R}</tex>
Рассмотрим функцию от n переменных <tex>f(\alpha_1,\ldots,\alpha_n) = \|x_0 + \sum\limits_{k=1}^n \alpha_k e_k\|</tex> *Из конспекта немного непонятно, почему {{TODO| t=доказать}}* Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса [[Нормированные пространства (3 курс)|здесь]]) <tex>\Rightarrow \exists \alpha^*_1, \alpha^*_2, \ldots, \alpha^*_n : f (\overline {\alpha}^*) = \inf\limits_{\alpha} f(\alpha)</tex>
<tex>y \in R(T)</tex>, среди всех решений уравнения <tex>Tx=y</tex> существует решение с минимальной нормой. Его назовём <tex>\widehat x</tex>, и далее докажем, что эти решения допускают априорную оценку через y.
Анонимный участник

Навигация