Изменения

Перейти к: навигация, поиск

Альтернатива Фредгольма — Шаудера

17 байт добавлено, 11:26, 11 июня 2013
м
Нет описания правки
Пусть <tex>y \in R(T) \Rightarrow Tx=y</tex>. Тогда <tex>\forall z \in \operatorname{Ker}T \Rightarrow T(x+z) = T(x) + T(z) = y + 0 = y</tex>. Значит, все решения уравнения <tex>Tx=y</tex> записываются в форме <tex>x=x_0+z</tex>, где <tex>x_0</tex> — одно из решений, <tex>z</tex> принадлежит <tex>\operatorname{Ker} T</tex>. Но <tex>\dim\operatorname{Ker}T < + \infty \Rightarrow \operatorname{Ker}~T = \mathcal{L} \{ e_1, \ldots e_n \} \Rightarrow x = x_0 + \sum\limits_{k=1}^n \alpha_k e_k, \alpha_k \in \mathbb{R}</tex>.
Рассмотрим функцию от <tex>n</tex> переменных <tex>f(\alpha_1,\ldots,\alpha_n) = \|x_0 + \sum\limits_{k=1}^n \alpha_k e_k\| = \|x_0 - \sum\limits_{k=1}^n (-\alpha_k) e_k\|</tex> . Эта функция — не что иное, как наилучшее приближение <tex> x_0 </tex> элементами конечномерного <tex> \operatorname{Ker} T </tex>, теорема о наилучшем приближении гарантирует нам, что существуют <tex> \alpha^*_1, \alpha^*_2, \ldots, \alpha^*_n : f (\overline {\alpha}^*) = \inf\limits_{\alpha} f(\alpha)</tex>.
<tex>y \in R(T)</tex>, среди всех решений уравнения <tex>Tx=y</tex> существует решение с минимальной нормой. Его назовём <tex>\widehat x</tex>, и далее докажем, что эти решения допускают априорную оценку через <tex>y</tex>.
<tex> T = I - A </tex>, так как <tex> \{ \widehat x_n \} </tex> ограничено и <tex> A </tex> компактен, то из <tex> z_n = A \widehat x_n </tex> можно выделить сходящуюся подпоследовательность <tex> z_{n_{k}} \to z </tex>.
Тогда получаем <tex> y_n y_{n_k} = \widehat x_n x_{n_k} - z_{n_{k}}</tex>.
Но <tex> y_n \to 0 </tex>, значит, <tex> \widehat x_n x_{n_k} - z_{n_{k}} \to 0, \widehat x_n x_{n_k} \to z_{n_{k}}, \widehat x = z = A \widehat x </tex>.
То есть, <tex> Tz = 0, z \in \operatorname{Ker} T </tex>.
689
правок

Навигация