Изменения

Перейти к: навигация, поиск

Примеры матроидов

140 байт добавлено, 21:30, 11 июня 2014
Нет описания правки
{{Определение
|definition=
Пусть <tex>V</tex> {{---}} векторное пространство над телом <tex>F</tex>, пусть набор векторов <tex>V_i = \mathcal{f} v_1,\ \dots,\ v_n\mathcal {g}</tex> из пространства <tex>V</tex> является носителем <tex>X</tex>. Элементами независимого множества <tex>I</tex> данного матроида являются множества линейно-независимых векторов из набора <tex>v_ 1,\ \dots,\ v_n</tex>.Тогда <tex>M = \langle V_i, I \rangle </tex>, называется '''матричным матроидом ''' (англ. ''vector matroid)''')
}}
{{ЛеммаУтверждение
|statement = Матричный матроид является матроидом.
|proof =
Множество в котором нет векторов является линейно-независимым.
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым.
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Так как <tex>A \in I,</tex> , то <tex>\dim \mathcal{L}(A) = \left\vert A \right\vert</tex>. По условию <tex>\left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \exists x \in B: x \notin \mathcal{L}(A)</tex>, то есть <tex>x \notin A</tex>. Тогда множество <tex> A \cup \mathcal{f} x \mathcal {g}</tex> линейно-независимо по определению линейной оболочки.
}}
{{Определение
|definition=
Пусть <tex>G = \langle V, E \rangle</tex> {{---}} неориентированный граф. Тогда <tex>M = \langle E, I \rangle </tex>, где <tex>I</tex> состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют '''графовым (графическим) матроидом ''' (англ. ''graphic matroid)''').
}}
{{ЛеммаУтверждение
|statement = Графовый матроид является матроидом.
|proof =
Пустое множество является ациклическим, а значит входит в <tex>I</tex>.
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
Очевидно, что любой подграф леса, так же является лесом, а значит входит в <tex>I</tex> вследствие своей ацикличности.
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью.
{{Определение
|definition=
Пусть <tex>G = \langle X, Y, E \rangle</tex> {{---}} двудольный граф. <tex>I = \mathcal{f} A \subset X \mid \exists </tex> паросочетание <tex> P</tex>, покрывающее <tex>A \mathcal {g} </tex>. Тогда <tex>M = \langle X, I \rangle </tex> называют '''трансверсальным матроидом ''' (англ. ''transversal matroid'').'''
}}
{{ЛеммаУтверждение
|statement = Трансверсальный матроид является матроидом.
|proof =
Пустое паросочетание удовлетворяет условию.
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания <tex>P</tex> ребра, концами которых являются вершины из множества <tex>B \setminus A</tex>. Оставшееся множество ребер будет являться паросочетанием, покрывающим <tex>A</tex>. Значит <tex> A \in I </tex>.
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Раскрасим ребра из паросочетания, соответствующего <tex> B </tex> в синий цвет, а соответствующего <tex> A </tex> {{---}} в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится <tex> \left\vert B \setminus A \right\vert </tex> ребер синего цвета, <tex> \left\vert A \setminus B \right\vert </tex> ребер красного цвета, и будет выполняться соотношение <tex> \left\vert B \setminus A \right\vert > \left\vert A \setminus B \right\vert</tex>. Рассмотрим подграф <tex> H </tex>, индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам {{---}} синему и красному, либо одному {{---}} синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь <tex> H' </tex>. Поменяем в <tex> H' </tex> синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид <tex>A \cup \mathcal{f} x \mathcal {g} </tex>, где <tex> x \in B \setminus A </tex>. Что значит, что <tex> A \cup \mathcal{f} x \mathcal {g} \in I</tex>.
}}
{{Определение
|definition=
'''Универсальным матроидом ''' (англ. ''uniform matroid)''' ) называют объект <tex>U_n,_k U_{nk} = \langle X, I \rangle </tex>, где <tex>X = \{1, 2, 3, \dots, n\}, I = \mathcal{f} A \subset X \mid \left\vert A \right\vert \leqslant k\}</tex>
}}
{{ЛеммаУтверждение
|statement = Универсальный матроид является матроидом.
|proof =
<tex> \left\vert \varnothing \right\vert = 0 \leqslant k \Rightarrow \varnothing \in I</tex>
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
<tex> \left\vert A \right\vert \leqslant \left\vert B \right\vert \leqslant k \Rightarrow \left\vert A \right\vert \leqslant k \Rightarrow A \in I </tex>
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Так как <tex>\left\vert A \right\vert < \left\vert B \right\vert </tex> и числа в каждом множестве различны, найдётся такое число <tex> x \in B </tex>, которое не будет принадлежать меньшему по мощности множеству <tex> A </tex>.
{{Определение
|definition=
Пусть <tex>X = \bigcup\limits_{i=_1}^n X_i</tex>, при этом <tex> X_i \cap X_j = 0</tex>, <tex>\forall i \neq j,</tex> , и <tex>k_1 \dots k_n</tex> {{---}} положительные целые числа. <tex>I = \mathcal{f} A \subset X \mid \left\vert A \cap X_i \right\vert \leqslant k_i, \ \forall i: 1 \leqslant i \leqslant n \mathcal {g}</tex>. Тогда <tex>M = \langle X, I \rangle </tex> называют '''матроидом разбиений ''' (англ. ''partition matroid)''')
}}
{{ЛеммаУтверждение
|statement = Матроид разбиений является матроидом.
|proof =
<tex>\left\vert \varnothing \cap X_i \right\vert = 0 \leqslant k_i \Rightarrow \varnothing \in I</tex>
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
<tex>A \subset B, \ \left\vert A \right\vert \leqslant \left\vert B \right\vert \Rightarrow \left\vert A \cap X_i \right\vert \leqslant \left\vert B \cap X_i \right\vert \leqslant k_i \Rightarrow A \in I</tex>
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Пусть <tex>\forall x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \notin I \Rightarrow \exists X_j, \ k_j: \left\vert A \cup \mathcal{f} x \mathcal {g} \cap X_j \right\vert > k_j</tex>, но так как <tex>A \in I</tex>, то есть <tex> \left\vert A \cap X_j \right\vert \leqslant k_j \Rightarrow \left\vert A \cap X_j \right\vert = k_j</tex> и <tex>x \in X_j</tex>. Из последнего следует, что <tex>\left\vert B \setminus A \right\vert \subset X_j</tex>.
<tex>\left\vert A \cap X_j \right\vert = \left\vert ((A \cap B) \cup (B \setminus A)) \cap X_j \right\vert = k_j</tex>, а <tex>\left\vert B \cap X_j \right\vert = \left\vert B \cap X_j \right\vert = \left\vert ((A \cap B) \cup (A \setminus B)) \cap X_j \right\vert</tex>. Так как <tex>\left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \left\vert A \setminus B \right\vert < \left\vert B \setminus A \right\vert</tex>, тогда <tex>\left\vert B \cap X_j \right\vert > k_j</tex>, но <tex>B \in I</tex>, противоречие.
{{Определение
|definition=
Пусть <tex>G = \langle V, E \rangle</tex> {{---}} неориентированный граф. <tex>I = \mathcal{f} A \subset V \mid \exists</tex> паросочетание <tex>P</tex>, покрывающее <tex>A \mathcal {g}</tex>. Тогда <tex>M = \langle V, I \rangle </tex> называют '''матроидом паросочетаний ''' (англ. ''matching matroid)''').
}}
{{ЛеммаУтверждение
|statement = Матроид паросочетаний является матроидом.
|proof =
Пустое паросочетание удовлетворяет условию.
2) <tex>A \subset B, \ B \in I \Rightarrow A \in I</tex>
Удалим из исходного паросочетания <tex>P</tex> ребра, концами которых являются вершины из множества <tex>B \setminus A</tex>. Оставшееся множество ребер будет являться паросочетанием, покрывающим <tex>A</tex>. Значит <tex>A \in I</tex>.
3) <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Пусть паросочетание <tex>P_A</tex> покрывает множество <tex>A</tex>, <tex>P_B</tex> {{---}} множество <tex>B</tex>.
Все вершины, принадлежащие <tex>A \cap B</tex> покроем ребрами из паросочетания <tex>P_B</tex>.
Рассмотрим три возможных случая:
* <tex>\exists xy \in P_A, \ y \in A \Rightarrow P_A</tex> покрывает <tex>A \cup \mathcal{f} x \mathcal {g} \Rightarrow A \cup \mathcal{f} x \mathcal {g} \in I</tex>
* <tex>\exists xy: y \in B \setminus A \Rightarrow xy \notin P_A</tex>. Мы можем добавить в <tex>A</tex> вершину <tex>x</tex> (или <tex>y</tex>), а в <tex>P_A</tex> ребро <tex>xy</tex>. Тогда паросочетание <tex>P_A \cup xy</tex> покрывает <tex>A \cup \mathcal{f} x \mathcal {g} \Rightarrow A \cup \mathcal{f} x \mathcal{g} \in I</tex>
*Если первые два случая не выполнились, значит <tex>\forall x \in B \setminus A</tex> <tex>\exists y \notin A, \ \notin B: \exists xy \in P_B</tex>. Обозначим множество таких <tex>y</tex> за <tex>C, \ \left\vert C \right\vert = \left\vert B \setminus A \right\vert > \left\vert A \setminus B \right\vert</tex>. Таким образом в <tex>C</tex> найдется хотя бы одна вершина <tex>y</tex>, не покрытая паросочетанием <tex>P_A</tex>. Тогда паросочетание <tex>P_A \cup xy</tex> покрывает <tex>A \cup \mathcal{f} x \mathcal {g} \Rightarrow A \cup \mathcal{f} x \mathcal{g} \in I</tex>
}}
{{Определение
|definition=
Матроид <tex>M</tex> на множестве <tex>X</tex> будем называть '''представимым представим над полем <tex>F</tex>''', если существуют векторное пространство <tex>V</tex> он [[Определение матроида| изоморфен]] некоторому векторному матроиду над <tex>F</tex> и отображение <tex>\phi:X \rightarrow V</tex>, обладающее тем свойством, что подмножество <tex>A</tex> независимо тогда и только тогда, когда <tex>\phi</tex> взаимнооднозначно на <tex>A</tex> и <tex>\phi(A)</tex> линейно-независимо в <tex>V</tex>этим полем.
}}
{{Определение
|definition=
'''Бинарный матроид ''' (англ. ''binary matroid)''' — ) {{---}} матроид, представимый над полем целых чисел по модулю <tex>2</tex>.
}}
Например, графовый матроид является бинарным.
Составим матрицу инцидентности <tex>A = (a_{ij})</tex> для графа <tex>G = \langle V, E \rangle</tex>. Строки этой матрицы соответствуют вершинам графа, а столбцы {{---}} ребрам.
* Если <tex>j</tex>-ое ребро есть петля, инцидентная <tex>i</tex>-ой вершине, то <tex>a_{ij} = 0</tex>.
* Если <tex>i</tex>-ая вершина инцидентна <tex>j</tex>-ому ребру, то <tex>a_{ij} = 1</tex>
Если среди данного множества ребер есть петля, то соответствующий ей столбец будет нулевым (по построению матрицы инцидентности), он и обеспечивает линейную-зависимость всего набора векторов.
Если петли нет, то рассмотрим столбцы, отвечающие ребрам простого цикла. Любая строка матрицы <tex>A</tex> содержит в этих столбцах ровно 2 единицы. Поэтому сумма по модулю <tex>2 </tex> указанных столбцов равна нулевому столбцу, что означает линейную зависимость исходного множества столбцов.
==Матроид с выкинутым элементомДругие матроиды==Несложно доказать, что следующие конструкции тоже являются матроидами.
{{Определение
|definition=
'''Матроид с выкинутым элементом'''. Пусть <tex>M = \langle X, I\rangle</tex> {{---}} матроид. Определим <tex>M\setminus x = \langle X \setminus x, \ \{A | A \in I, \ x \not\in A\}\rangle</tex>. Для любых <tex>M</tex> и <tex>x</tex> получившаяся конструкция <tex>M\setminus x</tex> является матроидом.
}}
==Матроид, стянутый по элементу==
{{Определение
|definition=
'''Матроид, стянутый по элементу'''. Пусть <tex>M = \langle X, I\rangle</tex> {{---}} матроид. Определим <tex>M/x = \langle X \setminus x, \ \{A \setminus x | A \in I, \ x \in A\}\rangle</tex>. Для любых <tex>M</tex> и <tex>x</tex>, таких что <tex>\{x\}\in I,</tex> получившаяся конструкция <tex>M/x</tex> является матроидом.
}}
==Урезанный матроид==
{{Определение
|definition=
Пусть <tex>M = \langle X, I \rangle</tex> {{---}} матроид. Обозначим как <tex>M|_k</tex> следующую констркуцию: <tex>M|_k = \langle X, \ \{A | A \in I, \ |A| \le k \}\rangle</tex>, тогда <tex>M|_k</tex> является называют '''урезанным матроидом'''.
}}
==Источники==
* Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)* Уилсон Р. {{---}} Введение в теорию графов (глава 9. Теория матроидов)
* [http://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture14.pdf Примеры матроидов]
*[[wikipedia:Matroid | Wikipedia {{---}} Matroid]]
137
правок

Навигация