Изменения

Перейти к: навигация, поиск
Нет описания правки
Возьмём два существующих пути между нужными нам вершинами: <tex>V_0E_1V_1E_2V_2 ... E_nV_n</tex>, <tex>v_0e_1v_1e_2v_2 ... e_mv_m</tex>, <tex>V_0 = v_0</tex>, <tex>V_n = v_m</tex>. Удалим из них путей одинаковые префиксы и суффиксы, оставив из них тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>V_aE_{a+1} ... E_bV_b</tex>, <tex>v_ae_{a+1} ... e_cv_c</tex>, <tex>V_a = v_a</tex>, <tex>V_b = v_c</tex>, <tex>E_{a+1} \neq e_{a+1}</tex>, <tex>E_b \neq e_c</tex>.
Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: <tex>V_0E_1V_1 ... E_kV_k</tex>, <tex>V_0 = V_k</tex>.
* Так как вершинно-простой цикл всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого цикла (ослабление результата).
* Утверждение
''Если две вершины графа лежат на цикле, то они лежат на простом цикле.'' 
в общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.
171
правка

Навигация