Изменения

Перейти к: навигация, поиск
Теорема Успенского-Райса: Fix html code issues
|definition='''Свойством языков''' (англ. ''property of languages'') называется множество <tex> A \subset \mathrm {RE} </tex>.
}}
'''Пример'''.
 
Свойство языка, язык содержит слова ''hello''.
{{Определение
|definition=Свойство называется '''тривиальным''' (англ. ''trivial''), если <tex> A = \varnothing </tex> или <tex> A = \mathrm {RE} </tex>.
}}
Псевдокод для <tex> A = \varnothing </tex>
p(A)
'''return''' ''false''
 
Псевдокод для <tex> A = \mathrm {RE} </tex>.
p(A)
'''return''' ''true''
{{Определение
|definition='''Язык свойства''' (англ. ''language of property'') <tex> A </tex> {{---}} множество программ, языки которых обладают этим свойством: <tex>L(A) \overset{\underset{\mathrm{def}}{}}{=} \lbrace p \mid L(p) \in A \rbrace </tex>.
}}
Пример.Пусть '''Отметим''', что принадлежность программы <tex>p_Xp</tex> {{---}} разрешитель некоторого языка языку свойства <tex>A</tex> можно выразить двумя эквивалентными утверждениями: p(:<tex>p_XL(p) \in A</tex>) '''return''' :<tex>p_Xp \in L(A)</tex>Далее в конспекте будет употребляться <tex>p \in L('hello'A)</tex>. 
{{Определение
|definition=Свойство <tex> A </tex> называется '''разрешимым''' (англ. ''recursive''), если <tex>L(A) </tex> является [[Разрешимые_(рекурсивные)_языки|разрешимым]].
}}
=== Примеры ===
'''Примеры свойств''':
# Язык должен содержать слово ''hello''.
# Язык должен содержать хотя бы одно простое число.
 
Псевдокод для разрешителя <tex>L(A)</tex>, где <tex>A = \mathrm {RE}: </tex>
<tex>p_A(p_X)</tex> <font color="green"> // <tex>p_X</tex> {{---}} полуразрешитель некоторого языка</font>
'''return''' ''true''
 
Псевдокод для программы в общем случае, то есть для проверки того, что язык удовлетворяет свойству :
<tex>p_A(p_X)</tex>
'''return''' <tex>p_X \in L(A)</tex>
 
Псевдокод полуразрешителя для языка свойства из первого примера:
<tex>p_A(p_X)</tex> <font color="green"> // <tex>X</tex> {{---}} перечислимый язык в общем случае, поэтому <tex>p_A</tex> {{---}} полуразрешитель (по [[Теорема Райса-Шапиро |теореме Райса-Шапиро]])</font>
'''return''' <tex>p_X</tex>('hello')
== Теорема Успенского-Райса ==
{{Теорема
|statement=
Язык никакого нетривиального свойства не является разрешимым.|proof=Приведём доказательство от противного. Предположим, что <tex>A</tex> разрешимо и нетривиально, не является разрешимым.}}===Доказательство===Пусть <tex>p_Ap_\infty</tex> {{---}} программа, разрешающая <tex>A</tex>всегда зацикливающийся алгоритм.
Не умаляя общности'''Рассмотрим случай, можно считать, что когда <tex>p_\varnothing infty \notin A</tex> in L(в противном случае перейдём к <tex> \mathrm {RE} \setminus A</tex>, которое также будет разрешимым и нетривиальным, так как <tex> \mathrm {RE} \setminus A</tex> != <tex>\varnothing </tex> и <tex> \mathrm {RE} \setminus A</tex> != <tex>\mathrm {RE} ) </tex>. Исключение пустого множества нам нужно чтобы различать <tex> X</tex> и пустое (при построении функции <tex>L(g_{i,x}))</tex>.'''
Поскольку <tex>A</tex> непустоПриведём доказательство от противного. Предположим, то найдётся перечислимый язык что <tex>X \in A</tex>. Пусть <tex>p_X</tex> {{---}} полуразрешитель <tex>X</tex>разрешимо.
Рассмотрим вспомогательную программу:язык <tex> U(i, x) S</tex> {{---}} универсальная функция , такой что <tex>g_S \in \overline{i,xA}(y):</tex> '''if''' U(iтакой язык существует, xтак как <tex>A</tex> {{---}} нетривиально) == 1 . Тогда //если i на входе x выдает 1 '''return''' <tex>p_Xp_S \in L(y\overline{A})</tex> '''else''' '''while''' ''true''.
Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным Рассмотрим также произвольное перечислимое неразрешимое множество <tex>i</tex> и <tex>xX</tex>. Значит, можно рассмотреть такую программу: Пусть <tex>USp_X(\langle i, x \rangle n)</tex> '''return''' {{---}} полуразрешитель <tex>p_A ( g_{i,x} ) X</tex>.
Заметим, чтоЗафиксируем произвольное <tex>n \in \mathbb{N}</tex> и построим следующую функцию <tex>LV_n(g_{i,x}) = \begin{cases} X, & Up_S(i, x) = 1; , n \in X \\ p_\varnothing, & Uinfty(i, x) , n \neq 1; notin X \\\end{cases}</tex>
Следовательно, '''function''' <tex>V_n<br/tex> (x): '''if''' <tex> USp_X</tex>(\langle i, x \rangle n) = p_A= 1 '''return''' <tex>p_S</tex>(g_{i,x}) = '''while''' ''true'' Получили, что если <tex>n \in X</tex>, то <tex>V_n \begin{cases} p_Ain L(p_X\overline A)</tex>, а если <tex>n \notin X</tex>, & Uто <tex>V_n \in L(iA)</tex>. Таким образом, x) = 1; <tex>n \in X \iff V_n \in L(\overline A)</tex>.   p_AТак как <tex>\overline A</tex> {{---}} разрешимо, то можно проверить для любого <tex>V_n</tex>, лежит ли оно в <tex>L(p_\varnothing overline{A})</tex>. Но это тоже самое, & U(iчто и проверка <tex>n \in X</tex>. Тогда можно для каждого <tex>n</tex> проверить, лежит ли оно в <tex>X</tex>, а следовательно и построить разрешитель для <tex>X</tex>. Так как <tex>X</tex> {{---}} неразрешимо, получили противоречие. '''Теперь рассмотрим случай, x) когда <tex>p_\neq 1; infty \in L(\overline{A})</tex>.'''  Так как <tex>\endoverline{casesA} </tex> {{---}} нетривиально (как дополнение к нетривиальному множеству), то по первой части доказательства оно неразрешимо. Следовательно, <tex>A</tex> также неразрешимо.=== Альтернативное доказательство с использованием теоремы о рекурсии===По [[Теорема о рекурсии | теореме о рекурсии]], программа может знать свой исходный код. Значит, в неё можно написать функцию <tex> \beginmathrm{getSrc()} </tex>, которая вернёт строку {{---}} исходный код программы. <tex> A </tex> {{---}} разрешимое семейство языков. <tex> L_A </tex> {cases{---}} множество программ, удовлетворяющих св-ву <tex> A </tex>. Теперь допустим, что язык <tex> L_A </tex> разрешим. Тогда напишем такую программу:  1<tex>propA(code){:}</tex> // программа, & Uразрешающее свойство языка <tex> A </tex> <tex>f(i, x) = 1{:}</tex> // такая программа <tex> f </tex>, что <tex>f \in A </tex>; \\существует потому что <tex> A </tex> {{---}} нетривиальное свойство 0, & U<tex>g(i, x) \neq 1; \\\end{cases:}</tex> // такая программа <tex> g </tex>, что <tex>g \notin A </tex>; существует потому что <tex> A </tex> {{---}} программанетривиальное свойство <tex>p(x){:}</tex> '''if''' <tex>propA(\mathrm{getSrc()})</tex> '''return''' <tex>g(x)</tex> '''else''' '''return''' <tex>f(x)</tex> Если <tex> p </tex> не удовлетворяет свойству <tex> A </tex>, тогда будет выполняться всегда вторая ветка, разрешающая [[Множества | универсальное множество]]и <tex> L(p) = L(f) </tex>. Но язык программы <tex> f </tex> принадлежит <tex> A </tex>. Получили противоречие.}}Если <tex> p </tex> удовлетворяет свойству <tex> A </tex>, то <tex> L(p) = L(g) </tex>, а <tex> g \notin A </tex>. Опять получили противоречие.
== См. также ==
* [[Теорема о рекурсии]]* [[Теорема Райса-Шапиро]]
== Источники информации ==
* [https://en.wikipedia.org/wiki/Rice%27s_theorem Wikipedia — Rice's theorem]
* Rice, H. G. "{{---}} Classes of Recursively Enumerable Sets and Their Decision Problems." {{---}} Trans. Amer. Math. Soc. 74, 358-366, 1953.* Хопкрофт Д., Мотванн Р., Ульманн Д. {{---}}Введение в теорию автоматов, языков и вычислений страница {{---}} стр. 397.[[Категория: Теория формальных языков]]
[[Категория: Теория вычислимости]]
[[Категория: Теория формальных языковРазрешимые и перечислимые языки]]
Анонимный участник

Навигация