Изменения

Перейти к: навигация, поиск

Триангуляция полигонов (ушная + монотонная)

75 байт убрано, 19:06, 20 января 2015
Оценка работы
[[Файл:Proof_lemma.jpg|450px]]
Если же <tex>r = p</tex> (случай '''(b)''' на рисунке), начём опять двигаться по сторонам <tex>P</tex> теперь уже вниз. Как и в предыдущем случае найдётся некоторая точка <tex>r'</tex>, которая будет результатом пересечения <tex>l</tex> и <tex>P</tex>. При этом <tex>r' \neq p</tex>, в противном случае <tex>l</tex> будет пересекать <tex>P</tex> только два раза, то есть что противоречит выбору <tex>Pl</tex> будет <tex>y</tex>-монотонным, что противоречит нашему предположению. Аналогично предыдущему случаю, выберем теперь самую низкую точку, которую мы достигли во время движения по сторонам P. Она будет merge вершиной.
}}
[[Файл:Split_case.jpg|200px|thumb|right|Обработка ''split'' вершины <tex>v_i</tex>]] Рассмотрим каждый случай подробнее:
# '''''Split вершина'''''. Пусть <tex>e_j</tex> и <tex>e_k</tex> — ближайшее левое и правое ребро относительно split вершины <tex>v_i</tex>, которые <tex>l</tex> пересекает в данный момент. Нам нужно найти вершину, лежащую между <tex>e_j</tex> и <tex>e_k</tex>, наиболее приближённую к <tex>l</tex>, либо если такой точки не существет выбрать минимальную из верхних вершин <tex>e_j</tex> и <tex>e_k</tex>. Для этого будем хранить указатель на искомую вершину у левого ребра <tex>e_j</tex>, который можно заранее вычислить. Тип вершины, хранящийся в <tex>helper</tex> не имеет значения. Таким образом, чтобы построить диагональ для split вершины нужно обратиться к указателю <tex>helper(e_j)</tex> её левого ребра, которое <tex>l</tex> пересекает в данный момент.# '''''Merge вершина'''''. В отличие от случая со split вершиной заранее вычислить указатель <tex>helper</tex> нельзя, поскольку merge вершина <tex>v_i</tex> должна быть соединена с вершиной, лежащей ниже заметающей прямой <tex>l</tex>. Для этого в <tex>helper(e_j)</tex> - левого относительно <tex>v_i</tex> ребра запишем саму <tex>v_i</tex>. Далее спускаем заметающую прямую вниз к следующей вершине <tex>v_m</tex>, обращаемся к <tex>helper</tex>'у её левого ребра. Проверяем, если там хранится merge вершина, строим диагональ <tex>v_{i}v_{m}</tex>. Последняя проверка осуществляется для любого типа вершины, кроме split, согласно п.1.[[Файл:Merge_case_1_2.jpg|500px|thumb|center|Обработка ''megremerge'' вершины <tex>v_i</tex>. На рисунке слева <tex>v_i</tex> записывается в качестве <tex>helper</tex>'а своего левого ребра. На правом рисунке ближайшая вершина <tex>v_m</tex> при обращении к своему левому ребру <tex>helper(e_j)</tex> находит <tex>v_i</tex> и образует диагональ <tex>v_{i}v_m</tex>]]
===== Структуры данных =====
==== Оценка работы ====
Изначально в многоугольнике содержится <tex>\mathcal{O}(n)</tex> ушей. Нетрудно понять, что в процессе отрезания ушей, смежные точки могут тоже становиться ушами. В результате триангуляции образуется <tex>n - 3</tex> диагонали, соответственно максимальное количество вершин, которые в процессе могут становиться ушами <tex>2n - 6</tex>. Итого общее количество ушей будет <tex>\mathcal{O}(n)</tex>. Определить, является ли вершина ухом можно за <tex>\mathcal{O}(n)</tex>, поскольку используется алгоритм определения принадлежности точки треугольнику — это <tex>\mathcal{O}(31)</tex>. Таким образом общий процесс отрезания ушей займёт <tex>\mathcal{O}(n^2)</tex>. Невыпуклых вершин всего <tex>\mathcal{O}(n)</tex>, каждая из них обрабатывается за константу, поэтому общее время для их обработки <tex>\mathcal{O}(n)</tex>. Списки рёбер и вершин строятся за линейное время, добавление ребра и удаление вершины в каждом из них работает за константу. Общее время <tex>\mathcal{O}(n^2)</tex>. Поскольку храним только два списка — память линейная.
== Источники ==
Анонимный участник

Навигация