Изменения

Перейти к: навигация, поиск
м
Нет описания правки
{{Определение|definition = Пусть нам даны три <tex>M_1 = \langle X, \mathcal{I}_1 \rangle </tex> и <tex> M_2 = \langle X, \mathcal{I}_2 \rangle </tex> {{---}} два матроида:на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>\mathcal{I}_1</tex> и <tex>\mathcal{I}_2</tex>. Положим <tex> \mathcal{I} = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \mathcal {g} </tex>. Множество <tex>\mathcal{I}</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, \mathcal{I} \rangle </tex> {{---}} матроид, для которого <tex>\mathcal{I}</tex> служит независимым множеством. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex> M_1 \cup M_2 </tex>}}Обычно термин "объединение" применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, тогда это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]].
<tex>M_1 = \langle X* Операция объединения матроидов ассоциативна, I_1 \rangle</tex>следовательно,можно говорить об объединении нескольких матроидов.* В отличие от пересечения матроидов, объединение двух конечных (англ. ''finite matroid'') матроидов всегда является матроидом, однако объединение двух бесконечных матроидов (англ. ''infinite matroid'') не обязательно будет им.* Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечение матроидов.
<tex>M_2 = \langle X, I_2 \rangle</tex>,
 
<tex>M = M_1 \cup M_2 = \langle X, I = \{A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2\} \rangle</tex>.
 
Для простоты мы считаем, что носители в обоих матроидах одинаковы, если не так, то дополним их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами.
Давайте зададим функцию <tex>P_1</tex> : <tex> X \times Y \rightarrow X</tex>: <tex>P_1((x, y)) = x</tex>, а для множества <tex>B \in X \times Y</tex> выполняется <tex>P_1(B) = \{A \subset X| \forall x \in A</tex> <tex>\exists y \in B : P_1(y) = x\}</tex>.
== Литература ==
Асанов М* Емеличев В. А. , Мельников О. И., Баранский Сарванов В. АИ., Расин ВТышкевич Р. ВИ. {{-- Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5}} Лекции по теории графов* Chandra Chekuri {{-8114-1068-2 (и на какой же странице это написано?)}} [https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture19.pdf '''Combinatorial Optimization''']* https://en.wikipedia.org/wiki/Matroid
22
правки

Навигация