Изменения

Перейти к: навигация, поиск

Участник:Dominica

1680 байт добавлено, 07:20, 4 июня 2016
Решение
}}
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/
Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает <tex>t</tex>.
Если <tex>0 \leqslant t \leqslant d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>. Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем <tex> d_j \geqslant \ldots \geqslant d_1 </tex>, будут выполнены с опозданием.
Отсюда, получим соотношение:
<p>
<tex>
F_j(t) =
\left \{\begin{array}{ll} \min(F_{j-1}(t-p_j), F_{j-1}(t) + w_j), & 0 \leqslant t \leqslant d_j \\
F_j(d_j), & d_j < t < T
\end{array} \right.
</tex>
</p>
При этом, <tex>F_j(t) = \infty </tex> при <tex>t < 0, j = 0,\ldots, n </tex> и <tex>F_0(t) = 0 </tex> при <tex>t \geqslant 0 </tex>.
'''for''' <tex>j = 1</tex> '''to''' <tex>n</tex>
'''for''' <tex>t = 0</tex> '''to''' <tex>d_j</tex>
'''if''' <tex> F_{j-1} (t) + w_j < F_{j-1}(t-p_j) </tex>
<tex> F_j(t) = F_{j-1}(t) + w_j </tex>
'''else'''
264
правки

Навигация