Изменения

Перейти к: навигация, поиск

Участник:Dominica

105 байт добавлено, 07:24, 4 июня 2016
Нет описания правки
==Решение==
 
{{Лемма
|id=lemma1
|statement= Пусть все работы отсортированы в порядке неубывания дедлайнов <tex>d_i</tex>.
Тогда существует оптимальное расписание вида <tex>i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n </tex>, такое, что <tex>i_1 < i_2 < \ldots < i_s </tex> {{---}} номера работ, которые успеют выполниться вовремя, а <tex>i_{s+1}, \ldots, i_n </tex> {{---}} номера просроченных работ.
|proof= Пусть у нас есть некоторое оптимальное раписание <tex>S</tex>. Получим необходимое нам расписание путем переставления некоторых работ.
#Если работа с номером <tex> i</tex> выполнится в <tex>S</tex> с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании <tex>S</tex>, при такой перестановке не произойдет увеличения целевой функции.
#Если работы с номерами <tex>i</tex> и <tex>j</tex> в расписании <tex>S</tex> выполняются вовремя, но при этом <tex>d_i < d_j </tex>, но <tex>j</tex> стоит в <tex>S</tex> раньше <tex>i</tex>. Тогда переставим работу с номером <tex>j</tex> так, чтобы она выполнялась после работы <tex>i</tex>. Таким образом, каждая из работ, находившихся в <tex>S</tex> между <tex>j</tex> и <tex>i</tex>, включая <tex>i</tex>, будет выполняться в новом расписании на <tex>p_j</tex> единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
#*Ни одна из работ, котарая успевала выполниться в расписании <tex>S</tex>, не попадет в список просроченных работ при переставлении её на более раннее время.
#*Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором <tex>S</tex>, как оптимального решения.
#*Поскольку <tex>d_i < d_j </tex> и работа <tex>i</tex> будет заканчиваться на <tex>p_j</tex> единиц времени раньше, то стоящая сразу послее нее работа <tex>j</tex> тоже будет успевать выполниться.
}}
 
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/
==Доказательство корректности и оптимальности==
 
{{Лемма
|id=lemma1
|statement= Пусть все работы отсортированы в порядке неубывания дедлайнов <tex>d_i</tex>.
Тогда существует оптимальное расписание вида <tex>i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n </tex>, такое, что <tex>i_1 < i_2 < \ldots < i_s </tex> {{---}} номера работ, которые успеют выполниться вовремя, а <tex>i_{s+1}, \ldots, i_n </tex> {{---}} номера просроченных работ.
|proof= Пусть у нас есть некоторое оптимальное раписание <tex>S</tex>. Получим необходимое нам расписание путем переставления некоторых работ.
#Если работа с номером <tex> i</tex> выполнится в <tex>S</tex> с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании <tex>S</tex>, при такой перестановке не произойдет увеличения целевой функции.
#Если работы с номерами <tex>i</tex> и <tex>j</tex> в расписании <tex>S</tex> выполняются вовремя, но при этом <tex>d_i < d_j </tex>, но <tex>j</tex> стоит в <tex>S</tex> раньше <tex>i</tex>. Тогда переставим работу с номером <tex>j</tex> так, чтобы она выполнялась после работы <tex>i</tex>. Таким образом, каждая из работ, находившихся в <tex>S</tex> между <tex>j</tex> и <tex>i</tex>, включая <tex>i</tex>, будет выполняться в новом расписании на <tex>p_j</tex> единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
#*Ни одна из работ, котарая успевала выполниться в расписании <tex>S</tex>, не попадет в список просроченных работ при переставлении её на более раннее время.
#*Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором <tex>S</tex>, как оптимального решения.
#*Поскольку <tex>d_i < d_j </tex> и работа <tex>i</tex> будет заканчиваться на <tex>p_j</tex> единиц времени раньше, то стоящая сразу послее нее работа <tex>j</tex> тоже будет успевать выполниться.
}}
==См. также ==
* [[Классификация задач]]
* [[1precpmtnrifmaxR2Cmax|<tex>R2 \mid \mid C_{max}</tex>]]* [[1ripipsumwu|<tex>1 \mid precr_i, pmtn, r_i p_i=p \mid \sum w_i U_i</tex>]]* [[1pi1sumwu|<tex>1 \mid f_p_{i} = 1 \mid \maxsum w_{i}U_{i}</tex>]] 
== Источники информации ==
* P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19 26 - 2028
264
правки

Навигация