Изменения

Перейти к: навигация, поиск
Нет описания правки
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]].
|proof =
Докажем эту теорему в предположении <tex>v_0 \neq v_n</tex>
=== Конструктивное доказательство ===
Рассмотрим путь: <tex>v_0e_1v_1e_2v_2 \ldots e_nv_n</tex> между вершинами <tex>v_0</tex> и <tex>v_n</tex>. Возьмем <tex>v_i</tex> {{---}} вершина на данном пути. Если она лежит на данном пути более одного раза, то она принадлежит какому-то (не обязательно простому) циклу <tex>v_ie_{i+1}v_{i+1}e_{i+2} \ldots v_{j=i}</tex>. Удалим этот цикл. Получившаяся последовательность вершин и рёбер графа останется путём <tex>v_0 \ldots v_n</tex>, но не будет содержать найденный цикл. Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.
|statement = Допустим, что выбранный путь не является простым}}
Тогда в нём содержатся две одинаковые вершины <tex>v_i = v_j</tex>, <tex>i < j</tex>. Удалим из исходного пути отрезок от <tex>e_{i+1}</tex> до <tex>v_j</tex>, включительно. Конечная последовательность также будет путём от <tex>v_0</tex> до <tex>v_n</tex> и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь {{---}} простой.
}}
{{Утверждение
|statement = Данная теорема не верна для случая <tex>v_0 = v_n</tex>.
|proof = В данном случае мы не сможем найти вершинно-простой путь, так как путь начинается и заканчивается в одной и той же вершине.
}}
== Замечания ==
Анонимный участник

Навигация