Изменения

Перейти к: навигация, поиск

Примитивно рекурсивные функции

1902 байта добавлено, 00:26, 20 марта 2019
Работа со списками фиксированной длины
== Рекурсивные функции ==
===Строительные блоки рекурсивных функций===
Рассмотрим примитивы, из которых будем собирать выражения:
<ol>
<li> <tex>\mathrm{U^n_i}</tex> {{---}} проекция (<tex>i</tex>-ый аргумент среди <tex>n</tex>).</li>
<tex>\mathrm{U^n_i}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, <tex>\mathrm{U^n_i} (x_1, ... \ldots, x_n) = x_i</tex>
<li> <tex>\mathrm{S}</tex>{{---}} подстановка.</li>
Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g_1}, ... \ldots, \mathrm{g_n}: \mathbb{N}^{m} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{S}\langle{}\mathrm{f},\mathrm{g_1},...\ldots, \mathrm{g_n}\rangle: \mathbb{N}^{m} \rightarrow \mathbb{N}</tex>. При этом <tex>\mathrm{S}\langle{}\mathrm{f},\mathrm{g_1},...\ldots, \mathrm{g_n}\rangle (x_1,...\ldots, x_m) = \mathrm{f}(\mathrm{g_1}(x_1,...\ldots, x_m), ... \ldots \mathrm{g_n}(x_1,...\ldots, x_m))</tex>
<li> <tex>\mathrm{R}</tex> {{---}} примитивная рекурсия.</li>
Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g}:\mathbb{N}^{n+2} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, при этом <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle (x_1,...\ldots, x_n,y) = \left\{\begin{array}{ll} \mathrm{f}(x_1,...\ldots, x_n) & y = 0\\ \mathrm{g}(x_1,...\ldots, x_n,y-1,\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle(x_1,...\ldots, x_n,y-1)) & y > 0
\end{array}\right.</tex>
<li> <tex>\mu</tex> {{---}} минимизация.</li>
Если <tex>\mathrm{f}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, то <tex>\mu \langle{}\mathrm{f}\rangle: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, при этом <tex>\mu \langle{}\mathrm{f}\rangle (x_1,...\ldots, x_n)</tex> &mdash; такое минимальное число <tex>y</tex>, что <tex>\mathrm{f}(x_1,...\ldots, x_n,y) = 0</tex>. Если такого <tex>y</tex> нет, результат данного примитива неопределен.
</ol>
{{Определение
{{Определение
|definition=
'''Примитивно рекурсивными''' (англ. ''Primitively recursive'') называют функции, которые можно получить с помощью правил <tex>1</tex>{{---}}<tex>5</tex>.
}}
Заметим, что если <tex> \mathrm{f} </tex> {{---}} <tex>n</tex>-местная примитивно рекурсивная функция, то она определена на всем множестве <tex> \mathbb{N}^{n} </tex>, так как <tex> \mathrm{f} </tex> получается путем правил преобразования из всюду определенных функций, и правила преобразования не портят всюду определенность. Говоря неформальным языком, рекурсивные функции напоминают программы, у которых при любых входных данных все циклы и рекурсий завершатся за конечное время. Если же говорить формально, то это свойство рекурсивных функций называется тотальностью.{{Определение|definition='''Тотальность''' (англ. ''Total Function'') {{---}} функция, определенная для всех возможных входных данных.}}
Благодаря проекторам мы можем делать следующие преобразования:
*В рекурсии не обязательно вести индукцию по последнему аргументу. Следует из того что мы можем с помощью проекторов поставить требуемый аргумент на последнее место.
*В дальнейшем вместо правиле подстановки можно использовать функции с разным числом аргументов. Например, подстановка <tex> \mathrm{P_F}(x,y) =\mathrm{n,kf}(\mathrm{g}(x_1y),\ldotsmathrm{h}(x,x_kx,y)) </tex> будем писать просто эквивалентна <tex> x_k \mathrm{F}(x,y,z) = \mathrm{f}(\mathrm{g}(\mathrm{U^2_2}(x,y)),\mathrm{h}(\mathrm{U^2_1}(x,y),\mathrm{U^2_1}(x,y),\mathrm{U^2_2}(x,y))) </tex>, подразумевая требуемое нам но если <tex> n \mathrm{F} </tex>не константная функция то все подставляемые функции должны иметь хотя бы один аргумент.
== Арифметические операции на примитивно рекурсивных функциях ==
===Строительные блоки рекурсивных функций===
==== '''n'''-местный ноль ====
<tex> \textbf 0 </tex> {{---}} функция нуля аргументов.
Выразим сначала <tex> \textbf 0^{1 }(y) = \mathrm{Z}(y) </tex>
<tex> \textbf 0^{n}(x_1,\ldots,x_{n-1}(,y) = \textbf 0 mathrm{Z}(y) </tex>
Теперь выразим вместо функции <tex>\mathrm{Z}(x)</tex> будем использовать константу <tex> \textbf 0^n </tex>, обозначив ее как <tex>\mathrm{Z}(x)</tex>.
====Константа <tex> \textbf 0^{n}(x_1,\ldots,x_{n-1},0) = \textbf 0^{n-1} M </tex>====
<tex> \textbf 0^{n}M(x_1,x) = \ldots,x_underbrace{n-1},y) = \textbf 0^mathrm{nN} </tex> ====Константа <tex> (\textbf M </tex>==== Константа <tex> \textbf M </tex> равна <tex> ldots (\mathrm{N}}_{ \text{M раз} }(\textbfmathrm{M-1Z}(x)))) </tex>
<tex> \textbf M^n </tex> {{---}} <tex>n</tex>-местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом.
==== Сложение ====
<tex> \mathrm{sum}(x, y) = \mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle(x,y)</tex>, где
 
<tex> \mathrm{f}(x) = x </tex>
 
<tex> \mathrm{g}(x, y, z) = \mathrm{N}(z) </tex>
 
 
<tex> \mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle (x,y) = \left\{\begin{array}{ll}
\mathrm{f}(x) & y = 0\\
\mathrm{g}(x, y-1,\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle(x, y-1)) & y > 0
\end{array}\right.</tex>
 
<tex>=\left\{\begin{array} {ll}
x & y = 0\\
\mathrm{N}(\mathrm{R} \langle{}\mathrm{f},\mathrm{g}\rangle(x, y-1)) & y > 0
\end{array}\right.</tex>
 
<tex>=\left\{\begin{array} {ll}
x & y = 0\\
\mathrm{N}(\mathrm{sum}(x, y-1)) & y > 0
\end{array}\right. </tex>
 
Можно преобразовать в более простой вид.
 
<tex> \mathrm{sum}(x,0) = x </tex>
<tex> \mathrm{sum}(x,y+1) = \mathrm{N} (\mathrm{sum}(x,y-1)) </tex>
==== Умножения ====
<tex> \mathrm{prod}(x,0) = \textbf 0^1mathrm{Z}(x) </tex>
<tex> \mathrm{prod}(x,y+1) = \mathrm{sum}(x,\mathrm{prod}(x,y-1)) </tex>
==== Вычитания ====
Если <tex> x < \leqslant y </tex>, то <tex> \mathrm{sub}(x,y) = 0 </tex> , иначе <tex> \mathrm{sub}(x,y) = x - y </tex>.
Рассмотрим сначала вычитания единицы <tex> \mathrm{sub_{1}}(x) = x - 1 </tex>
<tex> \mathrm{sub_1}(0) = \textbf mathrm{Z}(0 ) </tex>
<tex> \mathrm{sub_1}(x+1) = x </tex>
<tex> \mathrm{sub}(x,0) = x </tex>
<tex> \mathrm{sub}(x,y+1) = \mathrm{sub_1}(\mathrm{sub}(x,y-1)) </tex>
==== Операции сравнения ====
<tex> \mathrm{eq_0}(0) =\mathrm{N}(0) </tex>
<tex> \mathrm{eq_0}(y+1) = \mathrm{h}(y-1,\mathrm{eq}(y-1)) </tex> , где <tex> \mathrm{h}(y-1,\mathrm{eq}(y-1)) = \textbf 0^2mathrm{Z}(x,y-1) </tex>
Теперь все остальные функции
<tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{N}(x),y)) </tex>
==== IF Условный оператор ====
<tex> \mathrm{if}(0,x,y) = y </tex>
<tex> \mathrm{if}(c+1,x,y) = x </tex>
==== Деление ====
<tex> \mathrm{divide}(x,y) = \Bigl \lfloor \dfrac{x}{y} \Bigr \rfloor </tex>, если <tex> y > 0 </tex>. Если же <tex> y = 0 </tex>, то <tex> \mathrm{divide}(x,0) </tex> и все связанные с делением значение функции равны каким то ,нас не интересными для насинтересует, числамии можно определить её как угодно.
Сначала определим <tex> \mathrm{divmax}(x,y) </tex> {{---}} функция равна максимальному числу меньшему или равному <tex> x</tex>, которое нацело делится на <tex> y </tex>.
<tex> \mathrm{divmax}(0,y) =\textbf 0^mathrm{1Z} (y) </tex>
<tex> \mathrm{divmax}(x+1,y) = \mathrm{if}(\mathrm{eq}(\mathrm{sub}(\mathrm{N}(x-1),\mathrm{divmax}(x-1,y)),y),</tex><tex>\mathrm{N}(x-1),\mathrm{divmax}(x-1,y)) </tex>
Теперь само деления
<tex> \mathrm{divide}(0,y) =\textbf 0^mathrm{1Z} (y) </tex>
<tex> \mathrm{divide}(x,y) = \mathrm{h}(x,y,\mathrm{divide}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) = \mathrm{sum}(z,\mathrm{eq}(\mathrm{N}(x),\mathrm{divmax}(\mathrm{N}(x),y))) </tex>
==== Работа со списками фиксированной длины ====
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск <tex> n </tex> - ого простого числа.Рассмотрим список из натуральны чисел <tex> [x_1,\ldots,x_n] </tex>, тогда ему в соответствия можно поставить число <tex> p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} </tex>, где <tex> p_i </tex> {{- --}} <tex>i</tex>-тое простое число. Как видно из представления,создания списка, взятие <tex> i </tex> - того
элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.
==Теоремы===== Теорема о примитивной рекурсивности вычислимых функций ===
{{Теорема
|statement= Если для [[Вычислимые функции|вычислимой функции]] <tex> \mathrm{F} </tex> существует примитивно рекурсивная функция <tex> \mathrm{T} </tex>, такая что для любых аргументов <tex> args </tex> максимальное количество шагов, за которое будет посчитана <tex> \mathrm{F}(x) </tex> на [[Машина Тьюринга|МТ]] равно <tex> \mathrm{T}(args) </tex>, то <tex> \mathrm{F} </tex> примитивно рекурсивная функция.
Каждому состоянию [[Машина Тьюринга|МТ]] поставим в соответствие список из четырех чисел <tex> [L,R,S,C] </tex>, где:
*<tex> L </tex> {{---}} состояние [[Машина Тьюринга|МТ]] слева от головки ленты, представлено в виде числа в системы счисления с основанием равным алфавиту [[Машина Тьюринга|МТ]]. Младшие разряды находятся возле головки. Пробелу соответствует ноль, чтобы число было конечным.
*<tex> R </tex> {{---}} состояние [[Машина Тьюринга|МТ]] справа от головки, представлено аналогично <tex> L </tex> только возле головки [[Машина Тьюринга|МТ]] находятся старшие разряды.
*<tex> S </tex> {{---}} номер текущего состояния.
*<tex> C </tex> {{---}} символ на который указывает головка ленты.
Тогда всем переходам соответствует функция <tex> \mathrm{f}([L,R,S,C]) </tex> принимающая состояние [[Машина Тьюринга|МТ]] и возвращающая новое состояние.
* Н. К. Верещагин, А. Шень. [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., испр., М.: МЦНМО, 2012]
*[http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8) Википедия {{---}} Рекурсивная функция]
*[https://en.wikipedia.org/wiki/Primitive_recursive_function Wikipedia {{---}} Primitive recursive function]
[[Категория: Теория формальных языков]]
[[Категория: Теория вычислимости]]
[[Категория: Вычислительные формализмы]]
Анонимный участник

Навигация