Изменения

Перейти к: навигация, поиск

Задача о счастливых билетах

3038 байт добавлено, 20:44, 10 июня 2017
Нет описания правки
__TOC__
== Решение с помощью динамического программирования ==
Обозначим количество <tex>n</tex>-значных чисел с суммой <tex>k</tex> как <tex>D_n^k</tex> (число может содержать ведущие нули). <tex>2n</tex>-значный счастливый билет состоит из двух частей: левой (<tex>n</tex> цифр) и правой (тоже <tex>n</tex> цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем <tex>2n</tex>-значное число с суммой <tex>k</tex> в левой части (это можно сделать <tex>D_n^k</tex> способами), для него будет существовать <tex>D_n^k</tex> возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой <tex>k</tex> в одной из частей равно <tex>(D_n^k)^2</tex>. Значит общее число билетов равно <tex>L_n = \sum_sum\limits_{k=0}^{9n} (D_{n}^{k})^2</tex>. Верхний индекс суммирования равен <tex>9n</tex>, так как максимальная сумма цифр в одной части билета равна <tex>9n</tex>. Также можно сопоставить счастливому билету <tex>a_1a_2\ldots a_n b_1b_2 \ldots b_n</tex> <tex>2n</tex>-значное число с суммой <tex>9n</tex>: <tex>a_1a_2\ldots a_n (9-b_1)(9-b_2) \ldots (9-b_n)</tex>, причем это соответствие взаимно-однозначно, поэтому <tex>L_n=D_{2n}^{9n}</tex>. Осталось научиться вычислять <tex>D_n^k</tex>. Положим <tex>D_0^k=\begin{cases}1,&k=0\\0,&k>0\end{cases}</tex>. При <tex>n>0</tex> количество <tex>n</tex>-значных чисел с суммой цифр <tex>k</tex> можно выразить через количество <tex>(n-1)</tex>-значных чисел, добавляя к ним <tex>n</tex>-ю цифру, которая может быть равна <tex>0, 1, \ldots, 9</tex>: <tex>D_n^k=\sum_sum\limits_{j=0}^{k9}D_{n-1}^{k-j}</tex>.
== Решение с помощью производящей функции ==
Действительно, однозначное число с суммой цифр <tex>k</tex> (для <tex>k=0,\ldots,9</tex>) можно представить одним способом. Для <tex>k>9</tex> — ноль способов. Заметим, что <tex>G^n(z)</tex> — производящая функция для чисел <tex>D_n^k</tex>, поскольку коэффициент при <tex>z^k</tex> получается перебором всех возможных комбинаций из <tex>n</tex> цифр, равных в сумме <tex>k</tex>. Ответом на задачу будет <tex>[z^{9n}]G^{2n}(z)</tex>. Перепишем производящую функцию в ином виде: <tex>
G(z) = 1+z+\ldots+z^9 = \dfrac{1-z^{10}}{1-z}
</tex> и получим, что <tex>G^{2n}(z)=(1-z^{10})^{2n}(1-z)^{-2n}=\sum_sum\limits_{k=0}^{2n}\binom{2n}{k}(-z^{10})^k\sum_sum\limits_{j=0}^{\infty}\binom{-2n}{j}(-z)^k</tex>. Так как <tex>\binom{-2n}{k}=(-1)^k\binom{2n+k-1}{k}</tex>, <tex>[z^{9n}]G^{2n}(z)=\sum_sum\limits_{j=0}^{\lfloor{\frac{9n/}{10}}\rfloor}(-1)^j\binom{2n}{j}\binom{11n-10j-1}{9n-10j}</tex>, что при <tex>n=3</tex> дает <tex>\binom{6}{0}\binom{32}{27}-\binom{6}{1}\binom{22}{17}+\binom{6}{2}\binom{12}{7}=55252</tex>.
== Решение с помощью формулы включения-исключения <ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%B2%D0%BA%D0%BB%D1%8E%D1%87%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8%D1%81%D0%BA%D0%BB%D1%8E%D1%87%D0%B5%D0%BD%D0%B8%D1%8F Формула включения-исключения — Викиконспекты]</ref>==
Как было замечено выше, ответ на задачу равен количеству шестизначных билетов с суммой <tex>27</tex>. Рассмотрим расстановки целых неотрицательных чисел на шести позициях, дающих в сумме <tex>27</tex>; обозначим их множество <tex>A</tex>. Выделим шесть множеств <tex>C_i, i = 1 \ldots 6</tex>, где <tex>i</tex>-е множество состоит из расстановок, у которых в <tex>i</tex>-й позиции стоит число, не меньшее <tex>10</tex>. Число счастливых билетов равно числу расстановок, не принадлежащих ни одному из множеств. Посмотрим на расстановку Расстановке <tex>(a_1,a_2 \ldots a_n)</tex> из <tex>n </tex> чисел с суммой <tex>k как на </tex> сопоставим сочетание с повторениями <ref>[https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%87%D0%B5%D1%82%D0%B0%D0%BD%D0%B8%D0%B5#.D0.A1.D0.BE.D1.87.D0.B5.D1.82.D0.B0.D0.BD.D0.B8.D1.8F_.D1.81_.D0.BF.D0.BE.D0.B2.D1.82.D0.BE.D1.80.D0.B5.D0.BD.D0.B8.D1.8F.D0.BC.D0.B8 Сочетание — Википедия]</ref> из <tex>n </tex> по <tex>k</tex>, число означает количество повторений элементав котором <tex>i</tex>-й элемент повторяется <tex>a_i</tex> раз. Так как это сопоставление взаимно-однозначно, значит количество расстановок равно количеству сочетаний с повторениями, т.е. <tex>\binom{n+k-1}{n-1}</tex>. Число <tex>\left\vert{A}\right\vert</tex> всех расстановок неотрицательных целых чисел с суммой <tex>27 </tex> в шесть позиций равно <tex>\binom{32}{5}</tex> Число расстановок <tex>\left\vert{C_i}\right\vert</tex> одинаково для всех <tex>i </tex> и равно <tex>\binom{22}{5}</tex>. В самом деле, мы можем поставить в <tex>i</tex>-ю позицию число <tex>10</tex>, а оставшуюся сумму <tex>17 </tex> произвольно распределить по шести позициям. Аналогично, число расстановок <tex>\left\vert{C_i \cap C_j}\right\vert</tex> одинаково для любой пары <tex>i, j, i \neq j</tex> и равно <tex>\binom{12}{5}</tex>: мы выбираем две позиции и ставим в них <tex>10 </tex> и произвольно распределяем оставшуюся сумму <tex>7 </tex> по шести позициям. Таким образом, искомое количество расстановок равно <tex>\left\vert{A}\right\vert - \binom{6}{1}\left\vert{C_i}\right\vert+\binom{6}{2}\left\vert{C_i \cap C_j}\right\vert = \binom{32}{5}-6\binom{22}{5}+15\binom{12}{5} = 55252</tex>
== Решение путем интегрирования ==
Рассмотрим многочлен Лорана (т.е. многочлен, в котором допускаются отрицательные степени) <tex>H(z)=G^3(z)G^3(1/z)</tex>. Заметим, что его свободный член равен <tex>\sum_sum\limits_{i=0}^{27}[z^i]G^3(z)\cdot [z^{-i}]G^3(z^{-1})=\sum_sum\limits_{i=0}^{27}(D_3^i)^2</tex>. Воспользуемся теоремой Коши <ref>[https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8 Интегральная формула Коши — Википедия]
</ref> из комплексного анализа:
{{Теорема
|id=th1
|author=Коши
|statement=Для любого многочлена Лорана <tex>p(z) </tex> его свободный член <tex>p_0 </tex> равен
: <tex>p_0=\dfrac{1}{2\pi i}{\displaystyle \int} \dfrac{p(z)}{z} dz</tex>, где интегрирование происходит по любой окружности, ориентированной против часовой стрелки и содержащей внутри себя начало координат.
}}
Упростим многочлен <tex>H</tex>:
: <tex>H(z)=\left( \dfrac{1-z^{10}}{1-z} \right) ^3\left(\dfrac{1-z^{-10}}{1-z^{-1}}\right)^3=\left(\dfrac{2-z^{10}-z^{-10}}{2-z-z^{-1}}\right)^3</tex> и применим замену <tex>z=e^{i\phi}</tex>:
: <tex>p_0=\dfrac{1}{2\pi}\displaystyle\int_0^{2\pi}\left(\dfrac{2-e^{10i\phi}-e^{-10i\phi}}{2-e^{i\phi}-e^{-i\phi}}\right)^3d\phi=\dfrac{1}{2\pi}\displaystyle\int_0^{2\pi}\left(\dfrac{2-2\cos(10\phi)}{2-2cos\phi}\right)^3d\phi=\dfrac{1}{2\pi}\displaystyle\int_{0}^{2\pi}\left(\dfrac{\sin^2(5\phi)}{\sin^2(\frac{\phi}{2})}\right)^3d\phi=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\left(\dfrac{\sin(10\phi)}{\sin\phi}\right)^6d\phi=\dfrac{1}{\pi}\displaystyle\int_{-\frac{\pi/}{2}}^{\frac{\pi/}{2}}\left(\dfrac{\sin(10\phi)}{\sin\phi}\right)^6d\phi</tex> Рассмотрим функцию <tex>f(\phi)=\dfrac{\sin(10\phi)}{\sin\phi}</tex> на <tex>[-\pi/2,\pi/2]</tex>. Вне отрезка <tex>[-\pi/10,\pi/10] f(\phi) \leqslant \dfrac{1}{\sin\frac{\pi}{10}}\approx 3</tex>, значит интеграл по этой части не больше <tex>\pi3^6 \approx 2100</tex>, основная часть сосредоточена на <tex>[-\pi/10,\pi/10]</tex>. Оценим интеграл по промежутку с помощью метода стационарной фазы.
Рассмотрим функцию <tex>f(\phi)=\dfrac{\sin(10\phi)}{\sin\phi}</tex> на <tex>\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]</tex>. Вне отрезка <tex>\left[\dfrac{-\pi}{10},\dfrac{\pi}{10}\right]
f(\phi) \leqslant \dfrac{1}{\sin\frac{\pi}{10}}\approx 3</tex>, значит интеграл по этой части не больше <tex>3^6\pi \approx 2100</tex>, основная часть сосредоточена на <tex>\left[-\dfrac{\pi}{10},\dfrac{\pi}{10}\right]</tex>. Оценим интеграл по этому промежутку с помощью метода стационарной фазы. <ref>[https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%81%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D1%80%D0%BD%D0%BE%D0%B9_%D1%84%D0%B0%D0%B7%D1%8B Метод стационарной фазы — Википедия]</ref> Этот метод позволяет оценить значение интеграла
: <tex>\displaystyle\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}}f^td\phi=\displaystyle\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}}e^{t\ln{f}}d\phi</tex>. При <tex>t \rightarrow \infty</tex> значение интеграла определяется поведением его фазы, т.е. <tex>\ln{f}</tex>, в окрестности стационарной точки <tex>0</tex> (точки, где <tex>(\ln{f})'=0</tex>, или, что то же самое, <tex>f'=0</tex>). Вблизи 0 <tex>f(\phi) \approx 10 (1 - \frac{33}{2}\phi^2)</tex>, а <tex>\ln{f}(\phi) \approx \ln 10 - \frac{33}{2}\phi^2</tex>. При больших <tex>t </tex> получим
: <tex>\displaystyle\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}}e^{t(\ln 10 - \frac{33}{2}\phi^2)}d\phi=10^t \displaystyle\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}}e^{-\frac{33}{2}\phi^2}d\phi=\sqrt{\dfrac{\pi}{66t}}erf\left(\sqrt{\dfrac{33t}{2}\phi}\right)\bigg\rvert_{-\frac{\pi}{10}}^{\frac{\pi}{10}}</tex>, где <tex>erf(z)</tex> {{---}} функция ошибок <ref>[http://mathworld.wolfram.com/Erf.html Erf -- from Wolfram MathWorld]</ref>. Заметим, что при <tex>z > 2 </tex> <tex>erf(z) \approx 1</tex>, поэтому интеграл примерно равен <tex>10^t \sqrt{\dfrac{2\pi}{33t}}</tex>.
Полагая <tex>t=6</tex> и вспоминая выражение для <tex>p_0</tex>, получаем приближенное равенство:
: <tex>p_0 \approx \dfrac{10^6}{3\sqrt{11\pi}} \approx 56700</tex>
Полученный результат с хорошей точностью (отклонение составляет не более <tex>3\%</tex>) приближает искомое значение.
== См. также ==
* [[Производящая функция]]
== Источники информации ==
* [http://www.genfunc.ru/theory/lucky/ Задача о счастливых билетах :: Производящие функции]
 
* ''Ландо С. К.'', Лекции о производящих функциях. {{---}} 3-е изд., испр. {{---}} М.: МЦНМО, 2007. {{---}} 144с. ISBN 978-5-94057-042-4
[[Категория:Дискретная математика и алгоритмы]]
[[Категория:Комбинаторика]]
[[Категория:Производящие функции]]
64
правки

Навигация