Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2017 осень

2112 байт добавлено, 11:21, 20 ноября 2017
Нет описания правки
# Пусть $r<k$ и хотя бы одно из них нечетно. Докажите, что существует $G$ - регулярный граф степени $k$, у которого нет $r$-фактора.
# Докажите, что у фактор-критического графа единственное множества Татта - пустое.
# Множество $S\subset V$, для которого $odd(G\setminus S)-|S|=def(G)$, называется барьером. $A(G)$ является барьером графа. Приведите пример графа, в котором $A(G)$ не является максимальным по включению барьером.
# Приведите пример графа, в котором $A(G)$ не является минимальным по включению барьером.
# Докажите, что пересечение двух максимальных по включению барьеров также является барьером.
# Пусть $x\in A(G)\cup C(G)$, $G'=G\setminus x$, $B'$ - барьер графа $G'$. Докажите, что $B=B'\cup x$ - барьер графа $G$. Следствие: любая вершина из $A(G) \cup C(G)$ входит в барьер графа $G$.
# Пусть $B$ - барьер графа $G$, тогда $B\cap D(G)$ пусто и все нечетные компоненты связности графа $G\setminus B$ являются подмножествами $D(G)$.
# Пусть $B$ - барьер графа $G$, причем $x \in B$. Тогда $B' = B \setminus x$ - барьер графа $G' = G \setminus x$.
# Докажите, что пересечение всех максимальных по включению барьеров $G$ равно $A(G)$.
# Лапой называется индуцированный подграф $K_{1, 3}$ - вершина (центр лапы) и три её соседа, не связанные между собой. Докажите, что если $B$ - минимальный по включению барьер $G$, то каждая вершина $B$ - центр лапы в $G$.
# Докажите, что если $G$ содержит четное число вершин и не содержит лапы, то он содержит совершенное паросочетание (Теорема Сумнера-Лас Вергнаса).
</wikitex>
Анонимный участник

Навигация