Изменения

Перейти к: навигация, поиск
Нет описания правки
{{Лемма
|statement = <tex>M = \langle X, I \rangle</tex> — матроид, <tex> f \colon X \to Y</tex>. Также существует обратное отображение <tex> f^{-1} \colon Y \to X</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle </tex> является матроидом.
|proof =
Докажем аксиомы независимости для <tex> I_1 </tex>.
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex>
# <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex><br /><tex>A \in I_1</tex>, значит <tex>\exists S, S \in I</tex>, такое, что <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>.
# Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), |A| > |B|</tex>. Докажем, что <tex>\exists y \in A \setminus B, B \cup \mathcal \{ y \mathcal \} \in I_1</tex><br /><tex>A = f(S) \Rightarrow \exists S_1 \subset S, A = f(S_1), |S_1| = |A| </tex>.<br /><tex>B = f(T) \Rightarrow \exists T_1 \subset T, B = f(T_1), |T_1| = |B| </tex>.<br /><tex>S_1 \in I, T_1 \in I</tex> по второй аксиоме для <tex>M</tex>.<br /><tex> |S_1| > |T_1| </tex>, значит по третьей аксиоме для <tex>M</tex>, <tex>\exists x \in S_1 \setminus T_1, T_1 \cup \mathcal \{ x \mathcal \} \in I</tex>. Следовательно <tex>f(T_1 \cup \mathcal \{ x \mathcal \}) \in I_1</tex>и <tex>f(x) \in f(S_1 \setminus T_1) = A \setminus B.</tex> Также <br /><tex>f(T_1 \cup \mathcal \{ x \mathcal \}) = f(T_1) \cup f(x) = B \cup f(x)</tex>. Значит <tex>\exists y = f(x) \in A \setminus B , B \cup \mathcal \{ y \mathcal \} \in I_1</tex>
}}
7
правок

Навигация