Изменения

Перейти к: навигация, поиск

Динамическое программирование

26 байт добавлено, 16:08, 16 января 2019
м
Принцип оптимальности на подотрезках
=== Принцип оптимальности на подотрезках===
Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть для всех отрезков $i$, $j$ (где <tex> u \leqslant i \leqslant j \leqslant v </tex>) известен оптимальный ответ для функции $f(i, j)$. Тогда мы будем вычислять $f(u, v)$ через такие $f(i, j)$. В качестве примера рассмотрим следующую классическую задачу: дана строка длины n, нужно найти максимальный подпалиндром (подпоследовательность максимальной длины, которая является палиндромом). Пусть $d(i, j)$ - ответ на задачу для подстроки, начинающаяся с символа $i$ и заканчивающаяся в символе $j$. Ясно, что $d(i, j) = 0$ для всех $i, j,$ таких что $i > j$ и $d(i, i) = 1$ для всех $i$. Пусть нам нужно посчитать значение для $d(i, j)$, причем значение $d$ для всех $l, r$, таких что <tex> i \leqslant l \leqslant r \leqslant j </tex> уже посчитаны и они оптимальны. Рассмотрим два случая: <br />
# <tex> s(i) \neq s(j)</tex>, тогда <tex> d(i, j) = \max(d(i, j - 1), d(i + 1, j)) </tex> <br /># <tex> s(i) = s(j)</tex>, тогда <tex> d(i, j) = d(i + 1, j - 1) + 2 </tex> <br />
Доказательство:<br />
# Так <tex>s(i) \neq s(j)</tex>, символы $s(i)$ и $s(j)$ не могут входить в максимальный подпалиндром одновременно, то есть либо $s(i)$ входят в максимальный подпалиндром(тогда его длина $d[i, j - 1]$), либо $s(j)$ входит в максимальный подпалиндром (тогда его длина $d[i + 1, j]$), либо оба не входят в максимальный подпалиндром (тогда его длина $= d[i, j - 1] = d[i + 1, j]$). <br />

Навигация