Изменения

Перейти к: навигация, поиск

Нейронные сети, перцептрон

84 байта добавлено, 18 январь
м
Нет описания правки
Как видно на рисунке справа, у нейрона есть <tex>n</tex> входов <tex>x_i</tex>, у каждого из которого есть вес <tex>w_i</tex>, на который умножается сигнал, проходящий по связи. После этого взвешенные сигналы <tex>x_i \cdot w_i</tex> направляются в сумматор, который аггрегирует все сигналы во взвешенную сумму. Эту сумму также называют <tex>net</tex>. Таким образом, <tex>net = \sum_{i=1}^{i=n} w_i \cdot x_i = w^T \cdot x</tex>.
Просто так передавать взвешенную сумму <tex>net</tex> на выход достаточно бессмысленно {{---}} нейрон должен ее как-то обработать и сформировать адекватный выходной сигнал. Для этих целей используют [[Практики реализации нейронных сетей#Функции активации|функцию активации (activation function)]], которая преобразует взвешенную сумму в какое-то число, которое и будет являться выходом нейрона. Функция активации обозначается <tex>\phi(net)</tex>. Таким образом, выходов искусственного нейрона является <tex>\phi(net)</tex>.
Для разных типов нейронов используют самые разные функции активации, но одними из самых популярных являются:
69
правок

Навигация