Изменения

Перейти к: навигация, поиск

Бустинг, AdaBoost

1099 байт убрано, 21 январь
Классификация признаков в компьютерном зрении
Алгоритмы бустинга могут основываться на выпуклых или невыпуклых алгоритмах оптимизации. Выпуклые алгоритмы, такие как AdaBoost и LogitBoost<ref>[https://en.wikipedia.org/wiki/LogitBoost Wikipedia {{---}} LogitBoost]</ref>, могут «потерпеть крушение» из-за случайного шума, так как не могут обучить базовым и поддающимся научению комбинациям слабых гипотез. Алгоритмы бустинга, основанные на невыпуклой оптимизации, такие как BrownBoost<ref>[https://ru.wikipedia.org/wiki/BrownBoost Википедия {{---}} BrownBoost]</ref>, могут быть обучены из данных с шумами и лежащий в основе классификатор Лонг–Серведио<ref>[http://phillong.info/publications/LS10_potential.pdf Philip M. Long, Rocco A. Servedio {{---}} Random Classification Noise Defeats All Convex Potential Boosters]</ref> для набора данных может быть обучен.
==Классификация признаков в компьютерном зренииПрикладное использование алгоритмов бустинга=====Задача классификации объектов===
Если даны изображения, содержащие различные известные в мире объекты, классификатор может быть обучен на основе них для автоматической классификации объектов в будущих неизвестных изображениях. Простые классификаторы, построенные на основе некоторых признаков изображения объекта, обычно оказываются малоэффективными в классификации. Использование методов бустинга для классификации объектов — это путь объединения слабых классификаторов специальным образом для улучшения общей возможности классификации.
===Задача классификации объектов===
Классификация признаков является типичной задачей компьютерного зрения, где определяется, содержит ли изображение некоторую категорию объектов или нет. Идея тесно связана с распознаванием, идентификацией и обнаружением. Классификация по обнаружению объекта обычно содержит выделение [[Общие понятия|признаков]]<sup>[на 18.01.19 не создан]</sup>, обучение классификатора и применение классификатора к новым данным. Есть много способов представления категории объектов, например по анализу формы, с помощью модели '''«мешок слов»''', с помощью локальных описателей, таких как '''SIFT'''<ref>[https://en.wikipedia.org/wiki/Scale-invariant_feature_transform Wikipedia {{---}} Scale-invariant feature transform]</ref>, и так далее. Примерами классификаторов с учителем служат наивные [[Байесовская классификация|байесовские классификаторы]]<sup>[на 18.01.19 не создан]</sup>, [[Метод опорных векторов (SVM)|методы опорных векторов]]<sup>[на 18.01.19 не создан]</sup>, смесь гауссиан и [[Нейронные сети, перцептрон|нейронные сети]]. Однако исследования показали, что категории объектов и их положение в изображениях могут быть обнаружены также с помощью обучения без учителя.
Распознавание категорий объектов ===Задача ранжирования выдачи поисковых систем===Благодаря AdaBoost в изображениях является сложной задачей в компьютерном зрении, особенно если число категорий великомире появился [[CatBoost|градиентный бустинг]] (англ. Это является следствием высокой внутренней изменчивости классов и необходимости обобщения различных понятий внутри класса. Объекты в одной категории могут выглядеть совершенно различными''gradient boosting'') или GBM. Даже один и тот же предмет может выглядеть непохожим Задачу ранжирования выдачи поисковых запросов рассмотрели с различных точек обзора, при другом мастшабе или освещении. Шум заднего плана и частичные наложения также добавляют сложности в распознавание. Люди способны распознавать тысячи типов объектовточки зрения функции потерь, которая штрафует за ошибки в то время как большинство существующих систем распознавания объектов тренируются для распознавания лишь нескольких, например человеческих лиц, автомобилей, простых объектов и т.д.. Увеличению числа категорий и возможности добавления новых категорий достигаетсяпорядке выдачи, поэтому было удобно внедрить GBM в частности, с помощью совместного использования признаков и бустингаранжирование.
==AdaBoost==
64
правки

Навигация