Изменения

Перейти к: навигация, поиск

Обучение с подкреплением

10 байт убрано, 22 январь
м
Нет описания правки
В обучении с подкреплением существует агент (''agent'') взаимодействует с окружающей средой (''environment''), предпринимая действия (''actions''). Окружающая среда дает награду (''reward'') за эти действия, а агент продолжает их предпринимать.
Алгоритмы с частичным обучением пытаются найти стратегию, приписывающую состояниям (''states'') окружающей среды действия, которые должен предпринять одно из которых может агент в этих состояниях.
Среда обычно формулируется как [http://en.wikipedia.org/wiki/Markov_decision_process марковский процесс принятия решений] (МППР) с конечным множеством состояний, и в этом смысле алгоритмы обучения с подкреплением тесно связаны с динамическим программированием.
При обучении с подкреплением, в отличии от обучения с учителем, не предоставляются верные пары "входные данные-ответ", а принятие субоптимальнх решений (дающих локальный экстремум) не ограничивается явно.
Обучение с подкреплением пытается найти компромисс между исследованием неизученных областей и применением имеющихся знаний (''exploration vs exploitation'').
Баланс изучения-применения при обучении с подкреплением исследуется в задаче [http://en.wikipedia.org/wiki/Multi-armed_bandit многорукого бандитао многоруком бандите].
Формально простейшая модель обучения с подкреплением состоит из:
77
правок

Навигация