Изменения

Перейти к: навигация, поиск

Мета-обучение

31 байт добавлено, 30 январь
Нет описания правки
<b>Мета-обучение</b> {{---}} подход, позволяющий определять оптимальный алгоритм (иногда, вместе с параметрами к нему) для конкретной задачи. Основная идея мета-обучения {{---}} свести задачу выбора алгоритма к задаче обучения с учителем: задачи описываются мета-признаками. Мета-признак описывает свойство задачи {{---}} , например, разрежен ли датасет или нет, число категориальных или численных признаков объеков объектов в датасете, число возможных меток, размер датасета и многое другое.
От хорошей модели ожидается хорошая адаптируемость или генерализуемость новых задач и окружений, с которыми модель не сталкивалась во время обучения.
Такими задачами являются:
* Классификатор, тренированный на изображениях собак и велосипедов, после некоторых показанных ему кошек, смог определить, есть ли на новой картинке кошка;* Игровой бот, способный быстро обучиться новой игре;* Робот, выполняющий задачу на пригорке во время теста даже если он тренировался на ровной поверхности.
Ограничения {{---}} No free lunch teorem.<ref>[https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search Wolpert and Macready, 1996]</ref><ref>[https://www.researchgate.net/publication/228671734_Toward_a_justification_of_meta-learning_Is_the_no_free_lunch_theorem_a_show-stopper Giraud-Carrier and Provost, 2005]</ref>
<h2>Обзор</h2>
\begin{aligned}
\theta^* = \arg\min_\theta \mathbb{E}_{\mathcal{D}\sim p(\mathcal{D})} [\mathcal{L}_\theta(\mathcal{D})].
\end{aligned}
Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.
Few-shot классификатор {{---}} конкретизация мета-обучения в области обучения с учителем. Датасет $\mathcal{D}$ делится на две части: $\mathcal{D}=\langle S, B\rangle$,train set $S$ и test set $B$. Часто принимается k-shot N-class задача {{--- }} train set содержит $k$ размеченных примеров для каждого из $N$ классов.Датасет $\mathcal{D}$ содержит пары фичей и меток, $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$ и , каждая метка принадлежит известному множеству меток $\mathcal{L}$. Скажем, наш классификатор $f_θ$ с параметром $θ$ показывает вероятность принадлежности точки из данных к классу $y$ при векторе фичей $x$, $Pθ(y|x)$
Оптимальные параметры должны максимизировать вероятность верных меток среди нескольких training sets $B⊂\mathcal{D}$:
\begin{aligned}
\theta^* &= {\arg\max}_{\theta} \mathbb{E}_{(\mathbf{x}, y)\in \mathcal{D}}[P_\theta(y \vert \mathbf{x})] , &\\\theta^* &= {\arg\max}_{\theta} \mathbb{E}_{B\subset \mathcal{D}}[\sum_{(\mathbf{x}, y)\in B}P_\theta(y \vert \mathbf{x})] , & \scriptstyle{\text{; trained with mini-batches.}}
\end{aligned}
В Цель в few-shot классификации цель {{---}} уменьшить ошибку предсказания на неразмеченных данных с данным train set для "быстрого обучения". Чтобы ускорить процесс обучения, сделаем следующее:# возьмем подмножество меток, $L\subset\mathcal{L}$;
# возьмем train set $S^L⊂D$ и train batch $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1:
\begin{aligned}
L, y \in L, \forall (x, y) \in S^L, B^L,
\end{aligned}
# Множество $S^L$ подается на вход модели.;# Конечная оптимизация использует множество $B^L$ чтобы посчитать loss и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.
Можно представить каждую пару сэмплированного датасета $(S^L,B^L)$ как одну точку. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
\begin{aligned}
\theta = \arg\max_\theta \color{red}{E_{L\subset\mathcal{L}}[} E_{\color{red}{S^L \subset\mathcal{D}, }B^L \subset\mathcal{D}} [\sum_{(x, y)\in B^L} P_\theta(x, y\color{red}{, S^L})] \color{red}{]},
\end{aligned}
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в языковом моделировании (большие текстовые корпуса), когда доступен только ограниченный набор образцов данных для конкретной задачи. Мета-обучение идет еще на один шаг вперед, вместо того, чтобы подстраивать ее под одну задачу, она оптимизирует модель, чтобы она была хороша для многих задач.
<h2>Основанные на оптимизации</h2>
Модели глубокого обучения (deep learning) обучаются через обратное распространение градиентов. Тем не менее, оптимизация, основанная на градиентах не разрабатывалась для работы с небольшим количеством обучающих семплов, и не сходится за малое число оптимизационных шагов. Подход в мета-обучении, основанный на оптимизации как раз про это.
<h3>LSTM-meta-learner</h3>
Оптимизационный алгоритм может быть явно смоделирован. Ravi & Larochelle (2017) это и сделали и назвали его "meta-learner". Цель meta-learner'а {{--- }} эффективно обновлять параметры learner'a используя небольшой train set так, чтобы learner мог быстро адаптироваться к новым задачам.
Пусть модель ученика будет $M_θ$, параметризованной $θ$, и meta-learner как $R_Θ$ с параметром $θ$, и функция потерь $\mathcal{L}$.
Обновление параметров learner'a во время $t$ c learning rate $\alpha_t$ (шаг градиентного спуска):
\begin{aligned}
\theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}}\mathcal{L}_t,
\end{aligned}
\begin{aligned}
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t = \theta_{t-1} - \alpha_t\nabla_{\theta_{t-1}}\mathcal{L}_t,
\end{aligned}
$c_t$ {{---}} параметры сети $\theta_t$, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ при $f_t$ = 1.
$f_t$ = 1, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ {{- --}} не оптимальные значения, их изменение может оказаться полезным, если вы попали в неудачный локальный минимум.
\begin{aligned}
f_t &= \sigma(\mathbf{W}_f \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_f) , & \scriptstyle{\text{; как сильно мы забываем старые значения параметров.}}\\i_t &= \sigma(\mathbf{W}_i \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_i) , & \scriptstyle{\text{; соответствует рейту обучения на шаге t.}}\\\tilde{\theta}_t &= -\nabla_{\theta_{t-1}}\mathcal{L}_t , &\\\theta_t &= f_t \odot \theta_{t-1} + i_t \odot \tilde{\theta}_t , &\\
\end{aligned}
Reptile {{---}} относительно простой алгоритм мета-обучения, похожий на MAML, например, тем, что оба используют мета-оптимизацию через градиентный спуск и оба не чувствительны к модели.
# сэмплируем задачу;# тренируемся на ней несколькими шагами градиентного спуска;
# сдвигаем веса модели к новым параметрам.
<h2>Определение множества конфигураций</h2>
Предшествующие вычисления могут быть также использованы для изучения пространства более успешных конфигураций $\theta\star$. Более подходящие под задачу конфигурации могут серьезно ускорить поиск оптимальных моделей, это важно при ограниченных вычислительных рессурсахресурсах.
Альтернативный подход сперва узнать оптимальные гиперпараметры, а потом через приращение производительности определить важность каждого из гиперпараметров. Это и было сделано в лабе OpenML, провели около 500 000 экспериментов на 6 алгоритмах и 38 датасетах. Стандартные значения изучались вместе для всех гиперпараметров алгоритма посредством обучения суррогатных моделей на большом числе задач. После того, как уже проверены многие варианты конфигураций, выбирается такая, которая минимизирует ??? для всех задач, становится стандартной.Далее определяется важность каждого из гиперпараметров. Чем больше меняется приращение производительности, тем более важный гиперпараметр мы изменяем.
Если мы хотим предоставить рекомендации для конкретной задачи $t_{new}$, нам нужна дополнительная информация о том, насколько $t_{new}$ похожа на предыдущие задачи $t_j$. Первый способ {{---}} посчитать число рекомендованных конфигураций для $t_newt_{new}$, yielding новый эвиденс $\mathbf{P}_{new}$. Если позже мы будем наблюдать, что вычисления $P_{i,new}$ соответствуют $P_{i, j}$, то $t_{j}$ и $t_{new}$ могут быть очень похожими. Мы можем применить это знания для обучения meta-learner'a который предсказывает множество рекомендуемых конфигураций $\Theta^{*}_{new}$ for для $t_{new}$.Более того, можно пойти дальше и добавить $\Theta^{*}_{new}$ в $P_newP_{new}$ и , перейти к следующей итерации и выяснять какие еще задачи схожи друг с другом.
<h3>Relative landmarks</h3>
<h3>Суррогатные модели</h3>
Более гибкий способ передать информацию {{---}} построить суррогатную модель $s_{j}(\theta_{i}) = P_{i,j}$ для всех предшествующих задач $t_{j}$, обученную с использованием всех доступных $\mathbf{P}$. Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$.
Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$. Так же можно обучать суррогатные модели на Гауссовских процессах (GP) для каждой предыдущей задачи и еще одну для $t_{new}$ и объединить их во взвешенную и нормализованную сумму, с медианой $\mu$ , определенной как взвшенная взвешенная сумма $\mu_{j}$ полученных из задач $t_{j}$. Веса $\mu_{j}$ считаются через Nadaraya-Watson kernel-weighted average, где каждая задача представлена вектором relative landmarks и Epanechnikov quadratic kernel используется для определения похожести между векторами relative landmarks для $t_{j}$ и $t_{new}$. Чем больше $t_{j}$ похожа на $t_{new}$, тем больше получится вес $s_{j}$, увеличивающий влияние суррогатной модели для $t_{j}$.
Суррогатные модели обучаются только на $P_{i, new}$, а следующий $\theta_{i}$ получается путем нахождения средневзвешенного expected improvement $P_{i, new}$ и предсказанных улучшений на всех предшествующих $P_{i, j}$.
<h3>Обучение на свойствах задачи (learning on task properties)</h3>
Каждая задача $t_{j} \in T$ может быть описана вектором $m(t_j) = (m_{j,1}, ...,m_{j,K})$ из $K$ мета-фичей $m_{j, k} \in M$ , где $M$ {{---}} множество мета-фичей. Можно определить меру "похожести" задач, основанную, например, на Евклидовом расстоянии между $m(t_i)$ и $m(t_j)$, тогда можно будет использовать информацию из наиболее похожей задачи на новую задачу $t_{new}$. Более того, используя предшествующие вычисления $\textbf{P}$ можно обучить meta-learner'a $L$ предсказывать производительность $P_{i, new}$ конфигураций $\theta_{i}$ на новых задачах $t_{new}$.
$L: \Theta \times M \rightarrow \textbf{P},$
В таблице представлен обзор наиболее используемых мета-фичей.
Непрерывные фичи $X$ и таргет $Y$ имеют медиану $\mu_{X}$, stdev $\sigma_{X}$, variance $\sigma^{2}_{X}$. Категориальные фичи $\texttt{X}$ и класс $\texttt{C}$ имеют категориальные значения $\pi_{i}$, условные вероятности $\pi_{i|j}$, совместные вероятности $\pi_{i,j}$, предельные вероятности $\pi_{i+}=\sum_{j}\pi_{ij}$, энтропию $H(\texttt{X})=-\sum_{i}\pi_{i+}log_{2}(\pi_{i+})$.
Многие мета-фичи вычисляются по одиночным фичам или комбинации фичей, и должны быть агрегированы через min,max,$\mu$,$\sigma$,quartiles или гистограммами.
Во время вычисления похожести задач важно нормализовать все мета-фичи [bardnet], использовать feature selection <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать dimensionality reduction (PCA, например).
77
правок

Навигация