Изменения

Перейти к: навигация, поиск

Тьюринг-полнота

297 байт убрано, 23 июнь
Некоторые другие ЯП
|-
|style="background-color:#FFF;padding:2px 8px"| JavaScript
|style="background-color:#FFF;padding:2px 8px"| 19651995
|style="background-color:#FFF;padding:2px 8px"| Объектно-ориентированный
|style="background-color:#FFF;padding:2px 8px"| Высокий
==Проблема остановки==
{{Определение
|definition= Для Проблема остановки {{---}} проблема определения факта остановки данной машины Тьюринга и на данных входных данных для нее определить, остановится ли она когда-либо (запущенная на этих данных) закончит выполнение или нет).
}}
{{Теорема
|statement= Любая непротиворечивая формальная система аксиом <tex>T</tex>, способная выражать утверждения о натуральных числах и доказывать простые арифметические факты, неполна {{---}} существуют утверждения о натуральных числах, которые она не может ни доказать, ни опровергнуть.
|proof=
# Предположим, что система <tex>T</tex> еще и корректна (доказывает только истинные условия).
# Предположим, что система <tex>T</tex> полна, т.е. доказывает или опровергает любое утверждение.
# Сформулируем и запишем на языке арифметики утверждение <tex>O</tex> = "машина Тьюринга <tex>M</tex> точно остановится, если запустить ее с данными <tex>D</tex>".
# Переберем все доказательства (<tex>P</tex> {{---}} истинно) и опровержения (<tex>\neg P</tex> {{---}} истинно) в системе <tex>T</tex>, чья длина совпадает с длиной <tex>O</tex>.
# Так как система <tex>T</tex> полна, рано или поздно мы найдем опровержение или доказательство утверждения <tex>O</tex>
# Поскольку система Система <tex>T</tex> доказывает не только истинные факты(так как она только непротиворечива), т.е. доказываемое утверждение может быть ложным.# Тем не менее, мы фактически решили проблему остановки.Это очень простой способ доказательства теоремы Геделя о неполноте, но при этом он требует корректности <tex>T</tex> (тем не менее обычные системы аксиом арифметики всегда корректны).
}}
Анонимный участник

Навигация