Изменения

Перейти к: навигация, поиск

Neural Style Transfer

6 байт добавлено, 18 апрель
Принцип работы алгоритма
Такая природа представления кодирования сама по себе является ключом к передаче стиля, который используется для вычисления функции потерь между сгенерированным изображением относительно изображения контента и изображения стиля. При обучении модели более десяти тысяч изображений на класс модель может генерировать аналогичное представление признаков для множества различных изображений, если они принадлежат к одному классу или имеют схожий контент или стиль.
Следовательно, имеет смысл использовать разницу в значении представления признаков сгенерированного изображения по содержанию и по стилю изображения, чтобы направлять итерации, через которые мы производим само сгенерированное изображение, но как убедиться, что изображение с содержанием '''C''' и сгенерированное изображение '''G''' похожи по своему содержанию, а не по стилю, в то время как сгенерированное изображение наследует только похожее представление стиля изображения стиля '''S''', а не само изображение стиля в целом. Это решается разделением функции потерь на две части: одна {{- --}} потеря контента, а другая - потеря стиля.
== Функция потерь ==
Анонимный участник

Навигация