Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2019 осень

3407 байт добавлено, 22 октябрь
Нет описания правки
# Предложите алгоритм проверки, что можно выбрать удовлетворяющее назначение для формулы, которая является конъюнкцией клозов, каждый из которых является либо клозом Хорна, либо клозом Крома
# Формулы с кванторами. Рассмотрим формулу с кванторами $Qx_1Qx_2\ldots Qx_n f(x_1, \ldots, x_n)$, где $Q$ может быть квантором ""существует"" или ""для любого"". Докажите, что если если $f(x_1,\ldots,x_n)$ имеет ровно $k$ удовлетворяющих её назначений переменных, то существует ровно $k$ (из $2^n$ возможных) формул с кванторами в указанной форме, которые являются истинными.
# Как выглядит дерево Хаффмана для частот символов $1, 2, ..., 2^{n-1}$ (степени двойки) ?
# Как выглядит дерево Хаффмана для частот символов $1, 1, 2, 3, ..., F_{n-1}$ (числа Фибоначчи)?
# Докажите, что если размер алфавита - степень двойки и частоты никаких двух символов не отличаются в 2 или более раз, то код Хаффмана не лучше кода постоянной длины
# Модифицируйте алгоритм Хаффмана, чтобы строить $k$-ичные префиксные коды
# Обобщите неравенство Крафта-Макмиллана на $k$-ичные коды
# Укажите, как построить дерево Хаффмана за линейное время, если символы уже отсортированы по частоте
# Предложите алгоритм построения оптимального кода среди префиксных кодов с длиной кодового слова не более L бит
# Предложите способ хранения информации об оптимальном префиксном коде для n-символьного алфавита, использующий не более $2n - 1 + n \lceil\log_2(n)\rceil$ бит ($\lceil x\rceil$ - округление $x$ вверх)
# Можно ли разработать алгоритм, который сжимает любой файл не короче заданной величины $N$ хотя бы на 1 бит?
# Приведите пример однозначно декодируемого кода оптимальной длины, который не является ни префиксным, ни развернутым префиксным
# Для каких префиксных кодов существует строка, для которой он является кодом Хаффмана? Предложите алгоритм построения такой строки.
# Пусть заданы пары $(u_i, v_i)$. Предложите полиномиальный алгоритм проверки, что существует код Хаффмана для некоторой строки, в котором $i$-е кодовое слово содержит $u_i$ нулей и $v_i$ единиц.
# Докажите, что если в коде Хаффмана для некоторой строки $i$-е кодовое слово содержит $u_i$ нулей и $v_i$ единиц, то для многочлена от двух переменных $f(x, y) = \sum_{i=1}^n x^{u_i}y^{v_i}$ выполнено $f(x, y) - 1 = (x + y - 1) g(x, y)$ для некоторого многочлена $g(x, y)$.
# Изучите коды Шеннона-Фано https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A8%D0%B5%D0%BD%D0%BD%D0%BE%D0%BD%D0%B0_%E2%80%94_%D0%A4%D0%B0%D0%BD%D0%BE. Приведите пример текста, для которого код Шеннона-Фано хуже кода Хаффмана.
# Обобщите коды Шеннона-Фано на $k$-ичные коды.
Анонимный участник

Навигация