Изменения

Перейти к: навигация, поиск

Обсуждение:Лемма Бёрнсайда и Теорема Пойа

15 242 байта добавлено, 19:45, 22 декабря 2019
Добавлен пример задачи про раскраски граней куба. C картинками.
Иногда требуется провести подсчет комбинаторных объектов с точностью до некоторого отношения эквивалетности.
Если это отношение является отношением "с точностью до [[Действие группы на множестве|действия элементом группы]]", то такой подсчет можно провести
с помощью Леммы Бернсайда.

{{Определение
|definition=
Пусть [[Группа|группа]] <tex>G</tex> [[Действие группы на множестве|действует на множество]] <tex>X</tex>. '''Неподвижной точкой''' для элемента <tex>g</tex> называется такой элемент <tex>x</tex>,
для которого <tex>gx=x</tex>.
}}

{{Определение
|definition=
Множество неподвижных точек элемента <tex>g</tex> называется его '''стабилизатором''' и обозначается <tex>St(g)</tex>.
}}

{{Определение
|definition=
Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Будем называть два элемента <tex>x</tex> и <tex>y</tex> эквивалентными, если <tex>x = gy</tex> для некоторого <tex>g \in G</tex>. Классы эквивалентности данного отношения называются '''орбитами''', множество орбит обозначается как <tex>X/G</tex>.
}}

== Лемма Бёрнсайда ==

{{Лемма
|id=lemmaBerns.
|author=Бернсайд, '''англ.''' Burnside's lemma
|statement=Число орбит равно средней мощности стабилизатора элементов группы <tex>G</tex>. <math>|X/G| = \dfrac{1} {|G|}\sum\limits_{g \in G}|St(g)|</math>.
|proof=
Так как <tex>St(g)</tex> {{---}} стабилизатор элемента <tex>g</tex>, то по определению <math>\sum\limits_{g \in G}|St(g)| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math>.

Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство:
<math>|X/G|\cdot|G| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math>

Введем обозначение <tex>C=X/G</tex>.

Рассмотрим правую часть равенства:
<math>|\{(x, g) \in G\times X \mid g\cdot x = x\}| = \sum\limits_{x \in X} |G_x| = \sum\limits_{x \in X}</math><math> \dfrac{|G|}{|Gx|} = |G| \sum\limits_{x \in X}\dfrac{1}{|Gx|} </math>
<math>= |G|\sum\limits_{P\in C}\sum\limits_{x\in P}</math><math> \dfrac{1}{|P|}</math>

Заметим, что <math>\sum\limits_{x\in P} \dfrac{1}{|P|} \dfrac{1}{|P|}\sum\limits_{1}^{|P|}{1} = 1.</math> Следовательно:

<math>|G|\sum\limits_{P\in C}\sum\limits_{x\in P} \dfrac{1}{|P|} = |G|\sum\limits_{P\in C} 1</math>.

Очевидно, что <math>\sum\limits_{P\in C} 1 = \sum\limits_{1}^{|C|}{1} = |C|.</math> Тогда получим:

<math>|G|\sum\limits_{P\in C} 1 = |C|\cdot|G|.</math>

Откуда следует, что

<math>\sum\limits_{g \in G}|St(g)| = |C|\cdot|G|.</math>

}}

== Теорема Пойа ==

Теорема Пойа является обобщением леммы Бёрнсайда. Она также позволяет находить количество классов эквивалентности, но уже используя такую величину, как [[Действие перестановки на набор из элементов, представление в виде циклов|кол-во циклов в перестановке]].
В основе доказательства теоремы Пойа лежит лемма Бёрнсайда.


{{Теорема
|id=teorPo.
|author=Пойа, '''англ.''' Pólya enumeration theorem
|statement= <math>C = \dfrac{1}{|G|}\sum\limits_{g \in G} l^{P(g)}</math> ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(g)</tex> {{---}} кол-во циклов в перестановке <tex>g</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента.
|proof=Для доказательства этой теоремы достаточно установить следующее равенство
<math>|St(g)| = l^{P(g)}</math>


Рассмотрим некоторую перестановку <tex>g</tex> и некоторый элемент <tex>f</tex>. Под действием перестановки <tex>g</tex> элементы <tex>f</tex> передвигаются, как известно, по циклам перестановки. Заметим, что так как в результате должно получаться <tex>fg = f</tex>, то внутри каждого цикла перестановки должны находиться одинаковые элементы <tex>f</tex>. В то же время, для разных циклов никакой связи между значениями элементов не возникает. Таким образом, для каждого цикла перестановки <tex>g</tex> мы выбираем по одному значению, и, тем самым, мы получим все представления <tex>f</tex>, инвариантные относительно этой перестановки, т.е.:
<math>|St(g)| = l^{P(g)}</math>
}}

==Задача о числе раскрасок прямоугольника==
{{Задача
|definition=Выведите формулу для числа раскрасок прямоугольника <tex>[n \times m]</tex> в <tex>k</tex> цветов с точностью до отражения относительно горизонтальной и вертикальной оси.
}}
Решим данную задачу, воспользуясь леммой Бёрнсайда.

'''Решение'''

Для начала определим, какие операции определены на группе <tex>G</tex> {{---}} это операция "отражение относительно горизонтальной оси", обозначим ее как <tex>\alpha</tex>, "отражение относительно вертикальной оси" {{---}} <tex>\beta</tex> и "переход из одного состояния в него же" {{---}} <tex>e</tex>.
Таким образом, <tex>G</tex> содержит 4 комбинации операций: <tex>G = \{e, \alpha, \beta, \alpha \circ \beta \}</tex>.

Стоит уделить особое внимание тому факту, что никакие иные комбинации функций <tex>\alpha</tex> и <tex>\beta</tex> не были включены в <tex>G</tex>. Это объясняется довольно просто: очевидно то, что операции коммутативны, то есть <tex>\alpha \circ \beta = \beta \circ \alpha</tex>, а также то, что <tex>\alpha \circ \alpha = \beta \circ \beta = e</tex>, тогда любая комбинация данных функций может быть упрощена до вышеперечисленных (в <tex>G</tex>) путем совмещения одинаковых и замены их на <tex>e</tex>.

Отметим также то, что количество раскрасок прямоугольника <tex>[m \times n]</tex> в <tex>k</tex> цветов:
:1. С точностью до операции <tex>\alpha</tex> при нечетном <tex>m</tex> равно количеству раскрасок прямоугольника <tex>[m-1 \times n]</tex> в <tex>k</tex> цветов.
:2. С точностью до операции <tex>\beta</tex> при нечетном <tex>n</tex> равно количеству раскрасок прямоугольника <tex>[m \times n-1]</tex> в <tex>k</tex> цветов.
:3. С точностью до операции <tex>\alpha \circ \beta</tex> при нечетных <tex>n</tex> и <tex>m</tex> равно количеству раскрасок прямоугольника <tex>[m-1 \times n-1]</tex> в <tex>k</tex> цветов (а также частные случаи, когда <tex>n</tex> или <tex>m</tex> нечетные).
Данное множество фактов объясняется тем, что мы можем как бы "слить" вместе два столбика (и\или) столбца, при этом с точностью до нужного действия количество раскрасок не уменьшится.

Количество неподвижных точек в случае с действием <tex>e</tex> равно <tex>k^{nm}</tex>, так как ни одна раскрашенная клетка не повторилась при действии нулевого действия. Для действий <tex>\alpha</tex> и <tex>\beta</tex> количество раскрасок будет <tex>k^{\lceil \dfrac{m}{2} \rceil n}</tex> и <tex>k^{{\lceil {\dfrac{n}{2}} \rceil}m}</tex> соответственно, для их композиции количество раскрасок <tex>k^{{\lceil {\dfrac{nm}{2}} \rceil}}</tex>, так как верхняя левая четверть прямоугольника однозначно задаёт правую нижнюю, аналогично с правой верхней.

Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок.

:<tex> |C| = \dfrac{1} {|G|} \sum\limits_{g \in G}|St(g)| = \dfrac{I_1 + I_2 + I_3 + I_4}{4} = \dfrac{k^{nm}+k^{\lceil \dfrac{m}{2} \rceil n} + k^{{\lceil {\dfrac{n}{2}} \rceil}m} + k^{{\lceil {\dfrac{nm}{2}} \rceil}}}{4}</tex>

==Задача о числе раскрасок граней куба==
{{Задача
|definition=Выведите формулу для числа раскрасок граней куба в <tex>k</tex> цветов с точностью до поворота.
}}
Как и в предыдущей задаче, будем использовать в решении лемму Бёрнсайда.

'''Решение'''

Рассмотрим группу вращений куба <tex>G</tex>:

''Последующие изображения с развертками будут подразумевать такое же соответствие вершин, как на рисунке ниже. На развертках будем показывать раскраски, а на самом кубе ребро, через которое мы будем вращать его. Цвета на развертке лишь показывают то, что грани с одинаковым цветом должны быть одинаково раскрашены.''
[[Файл:burnside-intro.png|top]]
* <tex>1</tex> Тождественное вращение. Поскольку ничего не происходит, мы можем покрасить каждую грань в любой цвет <tex>\Rightarrow k^6 </tex> раскрасок.
[[Файл:burnside-1.png|top]]
* <tex>4</tex> вращения на угол <tex>120^{\circ}</tex> и <tex>4</tex> вращения на угол <tex>240^{\circ}</tex> вдоль главных диагоналей куба (вращений четыре, поскольку главных диагоналей <tex>4</tex> шт.). При вращении, если одна грань переходит в другую, мы должны покрасить их в один цвет. Такие раскраски будут являться стабилизатором данного вращения. Из рисунка видно, что мы можем покрасить наш куб в <tex>k^2</tex> цветов (в <tex>k</tex> цветов одни три грани и в <tex>k</tex> цветов другие три грани).
[[Файл:burnside-2.png|top]]
* <tex>6</tex> вращений на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих середины противоположных ребер <tex>\Rightarrow k^3 </tex> раскрасок.
[[Файл:burnside-3.png|top]]
* <tex>3</tex> вращения на угол <tex>90^{\circ}</tex> и <tex>3</tex> вращения на угол <tex>270^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней <tex>\Rightarrow k^3 </tex> раскрасок.
[[Файл:burnside-4.png|top]]
* <tex>3</tex> вращения на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней <tex>\Rightarrow k^4 </tex> раскрасок.
[[Файл:burnside-5.png|top]]

Итого <tex>1+(4+4)+6+(3+3)+3=24</tex> поворота, при которых куб переходит в себя. Других различных поворотов, которые переводят куб в себя не существует, поскольку ''группа вращений'' [https://en.wikipedia.org/wiki/Octahedral_symmetry <tex>G</tex> изоморфна ''симметрической группе'' <tex>S_4</tex>], тогда из того, что <tex>|S_4|=24</tex> следует, что мы указали все преобразования, которые переводят куб в себя, причем различным образом.

Теперь с помощью Леммы Бёрнсайда найдем искомый ответ:

:<tex> |C| = \dfrac{1} {|G|} \sum\limits_{g \in G}|St(g)| = \dfrac{1} {24} (k^6 + 8k^2 + 6k^3 + 6k^3 + 3k^4) = \dfrac{1} {24} (k^6 + 3k^4 + 12k^3 + 8k^2)</tex>

==См. также==
* [[Теорема Кэли|Теорема Кэли]]
* [[Задача об ожерельях|Задача об ожерельях]]

==Источники информации==
*[http://ru.wikipedia.org/wiki/%D0%9B%D0%B5%D0%BC%D0%BC%D0%B0_%D0%91%D1%91%D1%80%D0%BD%D1%81%D0%B0%D0%B9%D0%B4%D0%B0 Википедия {{---}} Лемма Бёрнсайда]
*[http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%BE%D0%B9%D0%B0 Википедия {{---}} Теорема Пойа]
*[https://en.wikipedia.org/wiki/Burnside%27s_lemma Wikipedia {{---}} Burnside's lemma]
*[https://en.wikipedia.org/wiki/P%C3%B3lya_enumeration_theorem Wikipedia {{---}} Pólya enumeration theorem]



[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Комбинаторика]]
[[Категория: Теория групп]]
50
правок

Навигация