Изменения

Перейти к: навигация, поиск

Регуляризация

4 байта убрано, 21 январь
Сравнение гребниевой и лассо регрессий
Так как используется $L_{1}$-регуляризатор, коэффициенты $\beta_{j}$ постепенно обнуляются с уменьшением $\chi$. Происходит отбор признаков, поэтому параметр $\chi$ называют еще ''селективностью''. Параметр $\chi$ "зажимает" вектор коэффициентов $\beta$, отсюда и название метода {{---}} лассо (англ. ''LASSO, least absolute shrinkage and selection operator'').
===Сравнение гребниевой гребневой и лассо регрессий===Основное различие гребниевой лассо и лассо гребневой регрессий заключается в том, что первая может приводить к обращению некоторых независимых переменных в ноль (используется $L_{1}$-регуляризатор), тогда как вторая уменьшает их до значений, близких к нулю (используется $L_{2}$-регуляризатор).
Продублируем наглядный пример из статьи о [[Вариации регрессии | вариациях регрессии]]. Рассмотрим для простоты двумерное пространство независимых переменных. В случае лассо регрессии органичение на коэффициенты представляет собой ромб (<tex>|\beta_1| + |\beta_2| \leq t</tex>), в случае гребневой регрессии {{---}} круг (<tex>\beta_1^2 + \beta_2^2 \leq t^2</tex>). Необходимо минимизировать функцию ошибки, но при этом соблюсти ограничения на коэффициенты. С геометрической точки зрения задача состоит в том, чтобы найти точку касания линии, отражающей функцию ошибки с фигурой, отражающей ограничения на <tex>\beta</tex>. Из Рис. 3 интуитивно понятно, что в случае лассо регрессии эта точка с большой вероятностью будет находиться на углах ромба, то есть лежать на оси, тогда как в случае гребневой регрессии такое происходит очень редко. Если точка пересечения лежит на оси, один из коэффициентов будет равен нулю, а значит, значение соответствующей независимой переменной не будет учитываться.
193
правки

Навигация