Изменения

Перейти к: навигация, поиск
Нет описания правки
'''Жизненный цикл модели машинного обучения''' – это многоэтапный процесс, в течении которого исследователи, инженеры и разработчики обучают, разрабатывают и обслуживают модель машинного обучения. Разработка модели машинного обучения принципиально отличается от традиционной разработки программного обеспечения и требует своего собственного уникального способа разработки. Модель машинного обучения — это приложение искусственного интеллекта (ИИ), которое дает возможность автоматически учиться и совершенствоваться на основе собственного опыта без явного участия человека. Основная цель модели заключается в том, чтобы компания смогла использовать преимущества алгоритмов искусственного интеллекта и машинного обучения для получения дополнительных конкурентных преимуществ.
 
==Исследование==
После необходимо сформировать команду проекта, распределить роли и обязанности между его участниками; создать расширенный поэтапный план проекта, который будет дополняться по мере поступления новой информации. Команда проекта состоит из менеджера, исследователей, разработчиков, аналитиков и тестировщиков.
 
==Анализ и подготовка данных==
Следующим этапом подготовки данных является моделирование данных, которые мы хотим использовать для прогнозирования. Моделирование данных — это сложный процесс создания логического представления структуры данных. Правильно сконструированная модель данных должна быть адекватна предметной области, т.е. соответствовать всем пользовательским представлениям данных. Моделирование также включает в себя смешивание и агрегирование веб данных, данных из мобильных приложений, оффлайн данных и др.
Для модели, рассматриваемой в данном конспекте, инженеры объединяют разнородные данные в цельный набор данных. Например, у них есть уже готовые данные по признакам, и они объединяют их в один набор данных.
 
==Разработка модели==
51
правка

Навигация