Изменения

Перейти к: навигация, поиск

Автоматическое машинное обучение

1694 байта добавлено, 14:25, 16 марта 2020
Нет описания правки
<b> Автоматическое машинное обучение </b> (англ. Automated Machine Learning, AutoML) {{---}} процесс создания динамической комбинации различных методов для формирования простой в использовании сквозной конвейерной системы машинного обучения. AutoML использует хорошо зарекомендовавшие себя методы, которые мы классифицируем в следующие категории на основе пайплайна конвеера машинного обучения (показано на Рис.1): подготовка данных, конструирование признаков, генерация моделей и их оценка.[[Файл:automl_1.png|1000px|thumb|center|Рисунок 1: AutoML конвеерКонвеер автоматического машинного обучения]]
<br>
Подготовка данных состоит из двух этапов: сбор данных и их предварительная обработка.<br>
Конструирование признаков состоит из 3 процессов: извлечение признаков, выбор признаков и построение признаков.<br>
Этап генерации модели включает в себя выбор модели и оптимизацию гиперпараметров выбранной модели.<br>
Методы [[Настройка гиперпараметров | оптимизации гиперпараметров]: рандомный случайный поиск, поиск по сетке, градиентный спуск (gradient descent, GD), [[Обучение с подкреплением | обучение с подкреплением]] (reinforcement learning, RL), [[Эволюционные алгоритмы | эволюционный алгоритм]]
(evolutionary algorithm, EA), байесовская оптимизация (Bayesian optimization, BO), байесовская оптимизация на основе гиперболы (Bayesian optimization based hyperband, BOBH).
== Подготовка данных ==
Первым шагом в пайплайне конвеере машинного обучения идет этап подготовки данных. Как правило, во многих задачах, например, распознавание изображений образов в медицине, бывает трудно получить достаточно данных, или <i>качественно размеченных</i> данных. Мощная система AutoML должна уметь справляться с этой проблемой. Для исследования этой задачи процесс подготовки данных разделяется на два подэтапа: сбор данных и их предобработка.
=== Сбор данных ===
Углубленное изучение ML привело к консенсусу, что качественные данные общедоступны. В результате появилось множество открытых наборов данных. Однако, с помощью вышеуказанных подходов, как правило, очень трудно найти надлежащий набор данных с помощью вышеуказанных подходов для специализированных задач, таких как медицинская помощь или другие частные вопросызадачи, связанные с медициной. Для решения этой задачи предлагается два типа методов: синтез данных и поиск данных.
==== Синтез данных ====
Одним из наиболее часто используемых методов является аугментация существующего набора данных. Для данных изображений существует множество [[Практики реализации нейронных сетей | операций аугментации]], таких как обрезка, поворот, изменение размера и т.д.<br>
Так как интернет является неисчерпаемым источником данных, поиск веб-данных {{---}} это интуитивно понятный способ сбора наборов данных. Тем не менее, есть некоторые проблемы с использованием данных, полученных таким образом.<br>
Во-первых, результаты поиска могут не совсем совпадать с ключевыми словами. Чтобы решить эту проблему, несвязанные данные могут быть отфильтрованы.<br>
Во-вторых, веб-данные могут быть неправильно размечены или не размечены вовсе. Для решения этой проблемы часто используется метод self_labelingиспользуются self-labeling методы. К примеру, один из таких методов [[Активное обучение | метод активного обучения]] выбирает наиболее "неопределенные" неразмеченные отдельные примеры для разметки вручную, а затем итеративно размечаются оставшиеся данные. Чтобы полностью устранить потребность в разметке данных вручную и еще больше ускорить этот процесс, предлагается множество методов саморазметки [[Обучение с частичным привлечением учителя | с частичным привлечением учителя]].<br>Однако, имеет также место быть существует проблема того, что наш набор данных не сбалансирован. Решением этой проблемы является, к примеру, [[Алгоритмы сэмплирования | алгоритм SMOTE]], который помогает синтезировать новые данные, которые будут относиться к миноритарным классам, а также уменьшать количество данных, относящихся к мажоритарным классам.
=== Предварительная обработка данных ===
После того, как необработанные данные были собраны, они должны быть предварительно обработаны, чтобы удалить избыточные, неполные или неправильные данные. Например, распространенными типами ошибок в полученных наборах данных являются пропущенные значения и неправильные типы данных. Типичными операциями, используемыми для обработки данных, являются стандартизация, масштабирование, бинаризация количественных характеристик и замена недостающих значений средними значениями.<br>
При работе с картинками, может возникнуть проблема, что картинка имеет неверную метку. В таких случаях применимы методы саморазметки. Тем не менее, процесс обработки данных обычно должен быть определен заранее вручную, потому что разные методы могут иметь различные требования, даже для одного и того же набора данных. Например, нейронная сеть может работать только с числовыми данными, в то время как методы, основанные на деревьях принятия решений, могут работать как с числовыми, так и с категориальными данными.
== Конструирование признаков ==
Конструирование признаков состоит из трёх подэтапов: выбор признаков (англ. feature selection), извлечение признаков (англ. feature extraction) и построение признаков (англ. feature construction). Извлечение и построение признаков {{---}} это варианты преобразования, с помощью которых создается новый набор признаков. Во многих случаях, целью извлечения признаков является [[Уменьшение размерности | уменьшение исходной размерности ]] путём применения некоторых функций отображения, в то время как построение признаков используется для расширения исходного пространства признаков. Цель выбора признаков состоит в том, чтобы уменьшить избыточность признаков путем выбора наиболее важных из них. В итоге, суть автоматического конструирования признаков в некоторой степени заключается в динамическом сочетание сочетании этих трех принципов.
=== Выбор признаков ===
=== Построение признаков ===
Это процесс создания новых признаков из исходного пространства или необработанных данных с целью улучшения качества и обобщаемой способности модели. Этот процесс сильно зависит от человеческого опыта, и одним из наиболее часто используемых методов являются препроцессинговые преобразования, такие как стандартизация, нормализация или дискретизация признаков. Кроме того, операции преобразования для различных типов признаков могут отличаться. Например, такие операции, как конъюнкция, дизъюнкция и отрицание, обычно используются для булевых бинарных признаков; такие операции, как минимум, максимум, сложение, вычитание, среднее значение, обычно используются для числовых признаков.<br>
Невозможно вручную исследовать все возможности. Таким образом, для дальнейшего повышения эффективности были предложены некоторые автоматические методы построения признаков, которые позволяют достичь результатов, которые не уступают или даже превосходят результаты, достигнутые человеческим опытом. Эти алгоритмы направлены на автоматизацию процесса поиска и оценки комбинации операций.
=== Извлечение признаков ===
Это процесс уменьшения размерности пространства признаков путем применения некоторых функций отображения.Он извлекает наиболее информативные признаки с учетом выбранных метрик. В отличие от выбора признаков, извлечение признаков изменяет исходные признаки. Главной частью извлечения признаков является функция отображения, которая может быть реализована многими способами. Наиболее распространенными подходами являются [[Метод главных компонент (PCA) | метод главных компонент (PCA)]], метод независимых компонент (ICA), [[Стохастическое вложение соседей с t-распределением | t-SNE]], isomap, нелинейное уменьшение размерности.
== Генерация модели ==
После генерации конструирования признаков нам нужно сгенерировать модель и задать ее гиперпараметры. Как показано на Рис. 1, генерация модели состоит из двух этапов: [[Модель алгоритма и её выбор | выбора модели]] и [[Настройка гиперпараметров | оптимизации гиперпараметров]]. <br><br>
Существует множество способов выбора модели. Ниже приведены некоторые из них:
=== TPOT (Tree-base Pipeline Optimization Tool) ===
== Оценка модели ==
После того, как новая модель была сгенерирована, ее производительность должна быть оценена. Интуитивный метод состоит в том, чтобы обучить сеть сходиться, а затем оценить ее производительность. Однако этот метод требует значительных временных и вычислительных ресурсов. Для ускорения процесса оценки модели было предложено несколько алгоритмов, которые приведены ниже.
=== Низкая точность (англ. Low fidelity) ===
Поскольку время обучения модели тесно связано с набором данных и размером модели, оценка модели может быть ускорена различными способами. <br>
Во-первых, В случае обработки изображений может быть уменьшено их количество изображений, или их разрешение (в терминах задач классификации изображений). <br>Во-вторыхТакже, оценка модели может быть реализована путем уменьшения размера модели, например, путем обучения с меньшим количеством фильтров на слой.=== Суррогатный метод (англ. Surrogate method) ===Суррогатный метод {{---}} это еще один мощный инструмент, который аппроксимирует black-box функцию. В общем случае, как только получено хорошее приближение, задача найти конфигурации, которые непосредственно оптимизируют исходную дорогостоящую цель, становится тривиальной. К примеру, [https://arxiv.org/abs/1712.00559 прогрессивный поиск оптимизации нейронной сети (PNAS)] вводит суррогатную модель для управления методом поиска. Хотя было доказано, что [https://towardsdatascience.com/illustrated-efficient-neural-architecture-search-5f7387f9fb6 эффективный поиск нейронной сети (ENAS)] очень эффективенпоказывает высокую производительность, PNAS еще более эффективен, поскольку число моделей, оцениваемых PNAS, более чем в пять раз превышает число моделей, оцениваемых ENAS, и PNAS в восемь раз быстрее с точки зрения общей вычислительной скорости. Однако, когда пространство оптимизации слишком велико и трудно поддается количественной оценке, а оценка каждой конфигурации чрезвычайно дорогостоящая, суррогатный метод неприменим.=== Ранняя остановка (англ. Early stopping) ===
Метод ранней остановки впервые был применен для избежания [[Переобучение | переобучения]] в классических задачах машинного обучения. Он используется для ускорения оценки модели путем остановки оценивания, которое, как предполагается, плохо работает на валидационном наборе.
=== Оптимизация ресурсов (англ. Resource-aware) ===
В большинстве исследований в прошлом больше внимания уделялось поиску нейронных архитектур, достигающих более высокой производительности (например, точности классификации), независимо от связанного с этим потребления ресурсов (т.е. количества графических процессоров и требуемого времени). Поэтому во многих последующих исследованиях исследуются алгоритмы, учитывающие ресурсы (resource-aware), чтобы найти компромисс между эффективностью и количеством вычислительных ресурсов. Для этого эти алгоритмы добавляют вычислительную стоимость к функции потерь в качестве ограничения ресурсов.<br>
Эти алгоритмы отличаются друг от друга типом вычислительной стоимости, которым могут являться:
* число параметров,* число операций умножения-накопления (MAC),* число операций с плавающей точкой (FLOP),
* действительная задержка
 
== Google Cloud AutoML ==
Сервис от компании Google, который позволяет создавать модели машинного обучения, использующий запатентованную технологию Google Research, чтобы помочь вашим моделям достичь наиболее высокой производительности и точных предсказаний. Используется простой графический пользовательский интерфейс Cloud AutoML для обучения, оценки, оптимизации и деплоя моделей на основе ваших данных. Также есть возможность генерировать высококачественные данные для интересующих вас задач.
=== Инструменты Cloud AutoML ===
* компьютерное зрение {{---}} [https://cloud.google.com/vision/overview/docs#automl-vision AutoML Vision], [https://cloud.google.com/video-intelligence/automl/docs AutoML Video Intelligence]
* машинный перевод {{---}} [https://cloud.google.com/natural-language/automl/docs AutoML Natural Language], [https://cloud.google.com/translate/automl/docs AutoML Translation]
* структурирование данных {{---}} [https://cloud.google.com/automl-tables/docs AutoML Tables]
== См. также ==
84
правки

Навигация