Изменения

Перейти к: навигация, поиск

Ядро

64 байта добавлено, 00:05, 23 марта 2020
Исправлены опечатки
[[File:kernel3_2.png|500px|thumb|right|Пример использования ядерного трюка]]
'''Ядерный трюк'''(анг. -- ''kernel function'') метод в машинном обучении, позволяющий перевести элементы для случая линейной неразделимости в новое линейно разделимое пространство пространство. Такое пространство называют '''спрямляющим'''. Поскольку для любой непротиворечивой выборки соответствующее пространство большей размерности существует, главной проблемой становится его найти.
== Определение ==
Функция $K(x,x'):X×X\rightarrow \mathbb{R}$ называется '''ядром''', если она может быть представлена в виде $K(x,x')=\langle \varphi(x),\varphi(x')\rangle_H$ при некотором отображении $\varphi(x):X\rightarrow H$,где $H $ {{---}} пространство со скалярным произведением.
Поскольку для задачи линейного разделения объектов не требуется их признаковое описание, а достаточно скаляров, то можно заменить скалярное произведение $\langle x,x'\rangle$ на ядро $K(x,x')$ . Более того, можно вообще не строить спрямляющее пространство $H$ в явном виде, и вместо подбора отображения $\varphi$ заниматься непосредственно подбором ядра.
Можно пойти ещё дальше, и вовсе отказаться от признаковых описаний объектов. Во многих практических задачах объекты изначально задаются информацией об их попарном взаимоотношении, например, отношении сходства. Если эта инфор-мация информация допускает представление в виде двуместной функции $K(x,x')$, удовлетворяющей аксиомам скалярного произведения, то задача может решаться методом [[Метод опорных векторов (SVM) | SVM опорных векторов ]].
== Выбор функции ядра ==
'''Теорема Мерсера''': Функция $K(x,y) $ является ядром тогда и только тогда, когда она симметрична: $K(x,y)=K(y,x)$ и неотрицательно определена, то есть $\forall g: X \rightarrow \mathbb{R}, \int_X \int_X K(x, x')g(x)g(x')dxdx' \geqslant 0$
Таким образом мы видим, что класс ядер достаточно широк.
Проверка неотрицательной определённости функции в реальных задачах может быть сложной. Чаще всего ограничиваются перебором конечного числа функций, про которые известно, что они являются ядрами. Среди них выбирается лучшая(обычно по критерию скользящего контроля). Такое решение не будет оптимальным , и на сегодняшний день проблема выбора ядра, оптимального для данной конкретной задачи, остаётся открытой.
== Конструктивные способы построения ядер ==
7. Если $s:X×X\rightarrow R$ произвольная симметричная интегрируемая функция, то $K(x,x′) =\int_Xs(x,z)s(x',z)dz$ является ядром.
8. Функция вида $K(x,x') = k(x−x')$ является ядром тогда и только тогда, когда Фурье-образ $F[k](\omega) = (2\pi)^{\frac{n}{2}}\int_Xe^{−i\langle\omega,x\rangle }k(x)dx$ неотрицателен.
9. Предел локально-равномерно сходящейся последовательности ядер {{---}} ядро.
10. Композиция произвольного ядра $K_0$ и произвольной функции $f:R\rightarrow R$, представимой в виде сходящегося степенного ряда с неотрицательными коэффициентами $K(x,x') = f(K_0(x,x'))$, является ядром. В частности, функции $f(z) =e^z$ и $f(z) =\frac{1}{1−z}$ от где $z$ - функция ядра {{---}} являются ядрами.
== Некоторые часто используемые функции ==
0.'''Линейное ''' $K(x, x')= \langle x, x'\rangle$
Используется в алгоритме [[Метод опорных векторов (SVM) | SVM ]] по умолчанию.
1.'''Полиномиальное ''' ядро $K(x, x') = (\langle x, x' \rangle + R)^d$
Используется когда необходимо получить полином $p(y)$, где в качестве y выступает скалярное произведение $\langle x, x' \rangle$. Поскольку в конструктивных возможностях у нас есть умножение ядер, умножение на коэффициент и сложение, то любой многочлен так же является ядром.
2.'''Гаусово ''' ядро RBF K(x, x') = $exp(-\frac{\parallel x - x'\parallel^2}{2\sigma^2})$
Такое ядро соответсвует бесконечномерному пространству. Поскольку оно является пределом последовательности полиномиальных ядер при стремлении степени ядра к бесконечности.
20
правок

Навигация