Изменения

Перейти к: навигация, поиск

Neural Style Transfer

12 182 байта добавлено, 19 апрель
Нет описания правки
<math>L_{style}(S, G) = \sum\limits_{l=0}^L w_l * L_{GM}(S, G, l)</math>
 
==Расширения алгоритмов NST==
 
[[Neural_Style_Network#Классификация методов NST | Вышеупомянутые методы NST]] предназначены для общих неподвижных изображений. Они могут не подходить для специализированных типов изображений и видео (например, рисунков, портретов на голове и видеокадров), поэтому были созданы расширения алгоритма NST на эти конкретные типы.
 
===Semantic Style Transfer===
 
При наличии пары стиля и изображений контента, которые похожи по содержанию, цель передачи семантического стиля состоит в создании семантического соответствия между стилем и контентом, который отображает каждую область стиля в соответствующую семантически подобную область контента.
 
===Instance Style Transfer===
 
Передача стиля экземпляра основана на сегментации экземпляра и предназначена для стилизации только одного указанного пользователем объекта в изображении. Основная проблема заключается в переходе между стилизованным объектом и нестилизованным фоном. Эту проблему можно решить путем добавления дополнительных потерь на основе MRF к сглаживающим граничным пикселям.
 
===Doodle Style Transfer===
Передача стиля каракулей заключается в использовании NST для преобразования черновых набросков в произведения искусства. Метод просто отбрасывает термин потери содержимого и использует рисунки в качестве карты сегментации для передачи семантического стиля.
 
===Portrait Style Transfer===
 
Современные алгоритмы передачи стилей обычно не оптимизированы для головных портретов. Поскольку они не накладывают пространственных ограничений, непосредственное применение этих существующих алгоритмов к портретам головы приведет к деформации структур лица. Решить эту проблему можно использованием карт усиления для ограничения пространственных конфигураций, которые могут сохранить структуры лица при передаче текстуры стиля изображения.
 
===Video Style Transfer===
 
В отличие от передачи стиля неподвижного изображения, при разработке алгоритма передачи стиля видео необходимо учитывать плавный переход между соседними видеокадрами.
 
====Image-Optimisation-Based Online Video Style Transfer====
 
Передача онлайн-стилей видео на основе оптимизации изображений: вводится временная потерю согласованности, основанная на оптическом потоке, чтобы штрафовать отклонения вдоль точечных траекторий. Оптический поток рассчитывается с использованием новых алгоритмов оценки оптического потока. В результате алгоритм устраняет временные артефакты и создает плавные стилизованные видеоролики. Однако при таком способе требуется несколько минут для обработки одного кадра.
 
====Model-Optimisation-Based Offline Video Style Transfer====
 
Оффлайн-стиль передачи видео на основе оптимизации моделей: для стилизации видео в режиме реального времени Хуан предлагает увеличить временную потерю согласованности при использовании текущего алгоритма PSPM. Для двух последовательных кадров потеря временной согласованности напрямую рассчитывается с использованием двух соответствующих выходных данных NST для поощрения согласованности по пикселям. Для вычисления потери временной согласованности вводится соответствующая двухкадровая стратегия синергетического обучения.
 
===Character Style Transfer===
 
Целью передачи стиля символа является применение идеи NST для создания новых шрифтов и текстовых эффектов. Янг предложил охарактеризовать элементы стиля и использовать извлеченные характеристики, чтобы направлять генерацию текстовых эффектов.
 
===Photorealistic Style Transfer===
 
Фотореалистичная передача стиля (также известная как передача стиля цвета) направлена ​​на передачу стиля распределения цвета. Общая идея состоит в том, чтобы основываться на текущей передаче семантического стиля, но исключить искажения и сохранить первоначальную структуру изображения контента.
 
====Image-Optimisation-Based Photorealistic Style Transfer====
 
Передача фотореалистичного стиля на основе оптимизации изображений. '''Алгоритм Луана''' предлагает двухэтапную процедуру оптимизации, которая состоит в том, чтобы инициализировать оптимизацию путем стилизации данной фотографии с помощью [[Neural_Style_Trasfer#Semantic Style Transfer | Image-Optimisation-Based Semantic Style Transfer], а затем штрафовать искажения изображения, добавляя регуляризацию фотореализма. Но поскольку алгоритм Луана основан на методе передачи семантического стиля на основе оптимизации изображений, он требует больших вычислительных затрат.
 
'''Алгоритм Мехреза''' также использует двухэтапную процедуру оптимизации. Он предлагает уточнить нефотореалистичный стилизованный результат путем сопоставления градиентов на выходном изображении с градиентами на фотографии содержимого. Этот алгоритм достигает более быстрой скорости фотореалистичной стилизации.
 
====Model-Optimisation-Based Photorealistic Style Transfer====
 
Передача фотореалистичного стиля на основе оптимизации моделей: Ли решил проблему эффективности, обрабатывая эту проблему в два этапа: этап стилизации и этап сглаживания. Шаг стилизации состоит в том, чтобы заменить слои с повышенной дискретизацией на неиспользуемые слои, чтобы получить стилизованный результат с меньшим количеством искажений. Затем этап сглаживания дополнительно устраняет структурные артефакты.
 
===Attribute Style Transfer===
 
Атрибуты изображения обычно относятся к цветам изображения, текстурам и т.д. Ранее передача атрибутов изображения осуществлялась по [[Neural_Style_Transfer#Example-Based Rendering | аналогии с изображением]]. '''Алгоритм Ляо''' предлагает глубокую аналогию изображения для изучения аналогии изображения в области CNN. Он основан на методе сопоставления патчей и реализует аналогию изображений со слабым контролем, то есть этому алгоритму требуется только одна пара исходных и целевых изображений вместо большого обучающего набора.
 
===Fashion Style Transfer===
 
Передача модного стиля получает образ модного стиля в качестве цели и генерирует изображения одежды с желаемыми модными стилями. Задача этой передачи заключается в том, чтобы сохранить схожий дизайн с базовой одеждой при смешивании желаемых стилей.
Эта задача решается введением пары генератора модного стиля и дискриминатора.
 
===Audio Style Transfer===
 
Аудио Стиль передачи . В дополнение к передаче стилей изображения, [90], [91] расширяют область стиля изображения до стиля звука и синтезируют новые звуки, передавая нужный стиль из целевого аудио. Исследование передачи стиля звука также следует пути передачи стиля изображения, то есть передачи аудио стиля онлайн на основе оптимизации звука (Audio-Optimisation-Based Online Audio Style Transfer), а затем передачи стиля аудио в автономном режиме на основе оптимизации модели (Model-Optimisation-Based Offline Audio Style Transfer). На основании алгоритма [[Neural_Stule_Transfer#Image-Optimisation-Based Online Neural Methods | IOB-NST]], был создан '''алгоритм Верма и Смита''' передачи аудио стиля на основе аудиооптимизации, основанный на оптимизации аудио онлайн. Алгоритм начинает с шумового сигнала и итеративно оптимизируют его, используя обратное распространение.
== Пример кода на Python ==
74
правки

Навигация