Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2020 осень

9 байт убрано, 11 сентябрь
Нет описания правки
# Докажите, что для любого $1 \le k \le n - 1$ существует связный граф $G$, содержащий $n$ вершин, такой что диаметр $S_G$ равен $n - k$.
# Докажите, что если в связном графе есть реберно простой цикл длины $k$, то у графа есть не менее $k$ остовных деревьев.
# Обобщение формулы Кэли. Дан лес из $n$ вершин, компоненты связности которого имеют размеры $c_1, c_2, \ldots, c_k$. Докажите, что число способов добавить ребра, чтобы получилось дерево, равно $c_1c_2\ldots c_k(c_1+c_2+\ldots+c_k)^{k-2}$.
Анонимный участник

Навигация