Изменения

Перейти к: навигация, поиск

Предел отображения в метрическом пространстве

1542 байта добавлено, 14:53, 23 января 2011
м
Равномерно непрерывные отображения
Тогда существуют такие <tex> x_1, x_2 </tex>, что <tex> f(x_1) = \inf\limits_{K}f, f(x_2) = \sup\limits_{K}f </tex>.
|proof=
Пусть <math>f(x)</math> — функция, отвечающая условиям теоремы (на компакте <math>A</math>), <math>M = \sup_A f</math>. Возьмём последовательность чисел <math>a_m</math> таких, что <math>\lim a_m = M</math> и <math>a_m < M</math>. Для каждого <math>m</math> найдётся точка <math>x_m</math>, такая что
<math>a_m < f(x_m)</math>. Имеем дело с компактом, поэтому, согласно [[Теорема Больцано — Вейерштрасса|теореме Больцано — Вейерштрасса]] из последовательности <math>x_m</math> можно выделить сходящуюся последовательность <math>\{x_{m_k}\}</math>, предел которой лежит в <math>A</math>.
 
Для любого <math>x_m</math> справедливо <math>a_m < f(x_{m_k}) < M</math>, поэтому, применяя [[предельный переход]], получаем <math>\lim f(x_{m_k}) = M</math> и в силу непрерывности функции существует точка <math>x_0</math> такая, что <math>\lim f(x_{m_k}) = f(x_0)</math> и, следовательно <math>M = f(x_0)</math>.
 
Таким образом функция <math>f(x)</math> ограничена и достигает своей верхней грани при <math>x = x_0</math>. Аналогично и для нижней грани.
}}
[[Категория:Математический анализ 1 курс]]

Навигация