Изменения

Перейти к: навигация, поиск

Блендинг изображений

15 байт добавлено, 20:20, 14 января 2021
м
Точка, точка, запятая
Пусть $f_S$ {{---}} скалярная функция, определенная на $P \setminus int(\Omega)$, задает фоновое изображение $S$; $f$ {{---}} неизвестная скалярная функция, определенная на $int(\Omega)$, задает, каким образом должно выглядеть результат блендинга в области вставки.
$v_I$ {{---}} векторное поле, определенное на $\Omega$. В качестве $v_I$ возьмем градиент вставляемого изображения $I$: $v_I = \nabla f_I$.
Нашей задачей является поиск такой функции $f$, чтобы блендинговое изображение выглядело реалистично. Для этого минимизируем разность градиента функции $f$ и векторного поля $v_I$, считая, что $f = f_S$ на границе $\Omega$.
$$
\underset{f}{\mathrm{min}} \underset{\Omega}{\iint} |\nabla f - v_I|^2, \text{где } f|_{\partial \Omega} = f_S|_{\partial \Omega}.
$$
Решение задачи минимизации является единственным решением уравнения Пуассона для граничных условий Дирихле.
Пусть $p$ {{---}} координаты $(x, y)$ пикселя двухмерного изображения. За $Img_p$ обозначим значение пикселя с координатами $p$ изображения $Img$. Пусть $\Omega = \left\{ p\;|\;M_p = 1 \right\}$. Тогда $\partial \Omega$ {{---}} координаты границы вставляемой области, а $int(\Omega)$ {{---}} внутренность области.
Пусть $N_p$ {{---}} множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$.
Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такое $O$, чтобы разность $O_p$ и $O_q$ была близка к $v_{pq}$. Для этого решим задачу минимизации:
$$
\underset{O_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2, \text{где } O_p = S_p, p \in \partial \Omega.
$$
Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in int(\Omega)$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю.
$$\frac{\partial{\underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right) - \underset{q \in N_p}{\sum} 2 \left(O_q - O_p - v_{qp}\right) = 2 \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right).$$.
Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$.
O_p,\; \text{если } p \in int(\Omega) \\
S_p,\; \text{иначе }
\end{cases}.
$$
|definition =
'''Матрица Грама''' (англ. ''Gram matrix'') {{---}} матрица попарных скалярных произведений. В нашем случае матрица отражает статистику выходов фильтров независимо от их расположения, что, в свою очередь, отражает стиль изображения.
$$G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l},$$$$G^l\left[I\right] = F^l\left[I\right]F^l\left[I\right]^T.$$}}
===Алгоритм Гатиса<ref name="GEB16">[https://rn-unison.github.io/articulos/style_transfer.pdf Image Style Transfer Using Convolutional Neural Networks] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)</ref>===
|definition =
$\mathcal{L}^{\gamma}_{hist}(S, O) = \displaystyle\sum_l \gamma_l \displaystyle\sum_{i, j} \left(F^l_{ij}\left[O\right] - R\left(F^l_{ij}\left[O\right]\right)\right)^2$ {{---}} функция потерь гистограмм, где
$\gamma_l$ {{---}} вклад $l$-го слоя в функцию потерь.}}
'''Замечание:''' Если в случае остальных функций потерь нетрудно посчитать производную, то здесь могут возникнуть проблемы. Но поскольку $\displaystyle\frac{\partial \mathcal{L}_{hist}}{\partial F^l_{ij}\left[O\right]}$ является нулём почти везде, авторы предлагают при подсчёте производной считать $R\left(F^l_{ij}\left[O\right]\right)$ константой, которая не зависит от $O$.
В первом проходе используется модифицированная функция потерь $\mathcal{L}_{Gatys}$, с тем лишь отличием, что в $\mathcal{L}^{\beta}_{style}$ к $F_l[S]$ применяется стилевой маппинг $P_l$.
$$\mathcal{L}_1(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(S, O, P) \text{, где } w_{style} \text{ {{---}} вес стилевой функции потерь.}$$
'''Замечание:''' при посчёте градиента $\mathcal{L}^{\alpha}_{content}$ используются только пиксели внутри маски<ref>https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_gram.lua#L349</ref>.
При вычислении стилевого маппинга появляется очень много дублирующихся векторов, что даёт не очень хорошие результаты. Поэтому при вычислении матрицы Грама выкинем повторяющиеся векторы. Назовём эту функцию потерь $\mathcal{L}_{s1}$.
$$\mathcal{L}_2(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{s1}(S, O, P) + w_{hist}\mathcal{L}^{\gamma}_{hist}(S, O) + w_{tv}\mathcal{L}_{tv}(O) \text{, где } w_{style}, w_{hist}, w_{tv} \text{ {{---}} веса соответсвующих функций потерь.}$$
{| class="wikitable" style="background-color:#FFF; text-align:center"
===Итоговый алгоритм===
Теперь осталось запустить две стадии :
<font size="3em">
Описанный алгоритм даёт хорошие результаты в целом, но при ближайшем рассмотрении могут быть артефакты. Поэтому сделаем двухступенчатую постобработку (подробное описание есть в оригинальной статье<ref name="LPSB18"/>):
# Переведём изображение в [https://en.wikipedia.org/wiki/CIELAB_color_space CIELAB] и применим [https://en.wikipedia.org/wiki/Guided_filter Guided filter] для a и b каналов.
# С помощью алгоритма PatchMatch<ref name="BSFG09">https://www.researchgate.net/profile/Eli_Shechtman/publication/220184392_PatchMatch_A_Randomized_Correspondence_Algorithm_for_Structural_Image_Editing/links/02e7e520897b12bf0f000000.pdf Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman (2009)</ref> и того же Guided filter делаем так , чтобы все патчи выходного изображения присутсвовали в стилевом (чтобы не было новых объектов или структур).
===Подбор гиперпараметров===
|}
Введём гиперпараметр $\tau$ и возьмём $w_{style} = w_{hist} = \tau$, $w_{tv} = \tau\frac{10}{1 + \exp(10^4 * noise(S) - 25)}$, где $noise(S) = \underset{i,j}{\mathrm{med}}\left\{\left(O^l_{i, j} - O^l_{i-1, j}\right)^2 + \left(O^l_{i, j} - O^l_{i, j-1}\right)^2\right\}$<ref>[https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_paint.lua#L470 код функции $noise$.</ref>
Для того чтобы подбирать $\tau$ авторы статьи использовали классификатор стилей изображений. Они взяли VGG-19, обучили её классифицировать $18$ различных стилей. Эти стили были разделены на $3$ категории с разными $\tau$. Используя $Softmax$ можно интерполировать необходимый $\tau$ по следующей таблице:
|definition =
'''Дискретный оператор Лапласа''' (фильтр Лапласа) $\mathbf{D}^2$ {{---}} аналог непрерывного оператора Лапласа $\nabla^2$, который позволяет выделять контуры изображения.
$$\mathbf{D}^2=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}.$$ }}
{| class="wikitable" style="float:right; clear:right;"
!Исходное изображение
На первом этапе изображение $I$ накладывается на фоновое изображение $S$ таким образом, чтобы были незаметны швы.
Построение начинается с белого шума $Z$, который оптимизируется в области вставки путем минимизации суммарной функции потерь $\mathcal{L}_{total}$, представленной взвешенной суммой всех функций потерь, описанных выше:
$$ \mathcal{L}_{total}(Z) = w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, M, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B) .$$
Отметим, что $\mathcal{L}_{cont}$ зависит от маски и отвечает за сохранение содержания $I$ в области вставки.
В отличие от предыдущего этапа, функция потерь не включает в себя $\mathcal{L}_{grad}$:
$$\mathcal{L}_{total}(O) = w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O).$$
Минимизация происходит относительно результата алгоритма $O$, который инициализируется изображением $B$.
58
правок

Навигация