Изменения

Перейти к: навигация, поиск

Generative Adversarial Nets (GAN)

Нет изменений в размере, 16:31, 15 января 2021
StackGAN (Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks)
==StackGAN (Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks)==
[[File:StackGANexample.jpg|400px|thumb|right|Рисунок 1011. Пример работы порождающей состязателной сети для генерации фото-реалистичных изображений StackGAN. Источник: https://arxiv.org/pdf/1612.03242.pdf]]
'''StackGAN''' $-$ порождающая состязательная сеть для генерации фото-реалистичных изображений (256x256) исходя из текстового описания. Генерировать фото-реалистичные изображения на обычных GAN сложно, поэтому была придумана двух-этапная модель генерации. Stage-I GAN рисует скетчи с примитивными формами и цветами, основанные на текстовом описании, в низком разрешении. Stage-II GAN принимает на вход изображения с первого этапа и текстовое описание и генерирует изображение в высоком разрешении с фото-реалистичными деталями. Чтобы улучшить разнообразие синтезированных изображений и стабилизировать обучение, вместо CGAN использовался метод Conditioning Augmentation.
Раннее использовались CGAN, поскольку на вход им можно было подавать условия, но просто добавляя слои, увеличивающие размер изображения, достичь хороших результатов не удалось. Поэтому основной задачей было повысить разрешение изображений.
Одной из ключевых особенностей StackGAN является Conditioning Augmentation, так как оно позволило расширить количество примеров тренировочного сета, путем небольших случайных изменений в исходных изображениях, что увеличивало многообразие данных. Как показано на картинке, текстовое описание <tex>t</tex> кодировщиком переводится в векторное представление <tex>\varphi_{t}</tex> (рис. 1110). Раннее векторное представление нелинейно трансформировалось, чтобы получить скрытые условные переменные, которые подавались на вход генератору, однако простарнство значений скрытых переменных имеет большую размерность, что приводило к разрывам в многообразии данных, что не выгодно для генератора. Чтобы избавиться от этого как раз нужно Conditioning Augmentation, которое в отличии от предоставления фиксированных значений переменных выбирает их из нормального распределения <tex>\mathcal{N}(\mu(\varphi_{t}), \Sigma(\varphi_{t}))</tex>, где среднее значение <tex>\mu(\varphi_{t})</tex> и ковариация <tex>\Sigma(\varphi_{t}))</tex> это функции от входного вектора <tex>\varphi_{t}</tex>. В добавок к уже упомянотому, чтобы сделать многообразие гладким и не переобучиться, нужно добавить регуляризацию, <tex>D_{KL}(\mathcal{N}(\mu(\varphi_{t}), \Sigma(\varphi_{t})) || \mathcal{N}(0, I))</tex> (KL divergence)<ref> [https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Kullback-Leibler divergence]</ref>.[[File:StackGANProcess.jpg|1000px|thumb|center|Рисунок 1110. Процесс обучения StackGAN. Источник: https://arxiv.org/pdf/1612.03242.pdf]]
Stage-I GAN тренирует дискриминатор <tex>D_{0}</tex> и генератор <tex>G_{0}</tex> поочередной максимизицаии <tex>L_{D_{0}}</tex> и минимизации <tex>L_{G_{0}}</tex>, как указано в уравенинях:
<center><tex>L_{D_0} = E_{(I_0, t)\sim p_{data}}[\log D_{0}(I_0, \varphi_t)] + E_{z\sim t, t \sim p_{data}}[\log (1 - D_0(G_{0}(z, \hat{c_0}), \varphi_t))]</tex></center>
<center><tex>L_{D} = E_{(I, t)\sim p_{data}}[\log D(I, \varphi_t)] + E_{s_0\sim p_{G_0}, t \sim p_{data}}[\log (1 - D(G(s_0, \hat{c}), \varphi_t))]</tex></center>
<center><tex>L_{G} = E_{s_0\sim p_{G_0}, t \sim p_{data}}[\log (1 - D(G(s_0, \hat{c}), \varphi_t))] + \lambda D_{KL}(\mathcal{N}(\mu(\varphi_{t}), \Sigma(\varphi_{t}) || \mathcal{N}(0, I))</tex></center>
Где <tex>s_0 = G_0(z,\hat{c_0})</tex> результат работы генератора Stage-I GAN и скрытый параметр <tex>\hat{c}</tex> подаются на вход дискриминатору и генератору Stage-II GAN, при этом на вход не подается случайное значение, как на первой стадии, поскольку хватает подачи случайного <tex>z</tex> на вход Stage-I GAN. При этом Stage-I GAN и Stage-II GAN имеют разные полно-связные слои, чтобы отличаться по среднему значению и стандартному отклонению, таким образом на разных этапах фокусируюемся на разных деталях исходного текста (рис. 1011).
==LAPGAN (Laplacian Pyramid of Adversarial Networks)==
100
правок

Навигация