Изменения

Перейти к: навигация, поиск

Локальная теорема о неявном отображении

8 байт добавлено, 05:48, 3 июня 2011
Нет описания правки
Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex>; и в <tex>(x_0,y_0)</tex> она непрерывно обратима. Тогда в некоторой окрестности начальных данных неявное отображение существует.
|proof=
Доказательство разбиваем на 2 этапа (и на экзамене они тоже будут спрашиваться по отдельности):<br>
<b>1 этап:</b> <tex>\Gamma_0=(f_{\overline y}'(\overline{x_0},\overline{y_0}))^{-1},~f(\overline x, \overline y)=0^m</tex><br>
<tex>\overline y = \overline y - \Gamma_0 f(\overline x, \overline y)</tex>. Проверим равносильность: пусть <tex>f(\overline x, \overline y)=0</tex>. <tex>\Gamma_0 f(\overline x, \overline y)=\Gamma_0(0^m)=0,~\overline y = \overline y</tex> — верное в любом случае уравнение.
<tex>T'=J-\Gamma_0f_y';~\Gamma_0f_y'(\overline{x_0},\overline{y_0})=J</tex>. Значит, <tex>T_{\overline y}'(\overline{x_0},\overline{y_0})=0</tex>. По условию <tex>f</tex> зависит от <tex>\overline x, \overline y</tex>, следовательно, <tex>T'</tex> таковой (???). Тем самым, в определении непрерывности полагаем <tex>\varepsilon=\frac 12,\exists \delta>0\colon~\|\overline{\mathcal 4 x}\|,\|\overline{\mathcal 4 y}\| \le \delta \Rightarrow \| T_{\overline y}'(\overline{x_0}+\overline{\mathcal 4{x_0}},\overline{y_0}+\overline{\mathcal 4{y_0}})\| \le \frac 12</tex><br>
<tex>V_{\delta}(\overline{x_0}),~W_{\delta}(\overline{y_0})</tex> такие, что <tex>T_{\overline y}'(\overline x, \overline y) \le \frac 12,~\forall \overline y',\overline y'' \in W_{\delta}(\overline{y_0}),~\forall\overline x\in V_{\delta}(\overline{x_0})</tex><br>
По неравенству Лагранжа <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \sup\limits_{\overline z \in \{y',y''\}}\|T_{\overline y}'(\overline x,\overline z)\|\|\overline y''-\overline y'\|</tex>. Но по выбору шаров этот <tex>\sup \le \frac 12</tex> и, таким образом, в наших условиях <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \frac 12 \|\overline y''-\overline y'\|</tex>.<br>
<b>2 этап:</b> На первом этапе найден коэффициент сжатия: <tex>\frac 12</tex>. Если проверить для <tex>T</tex> условия теоремы Банаха по <tex>\overline y</tex> в пределах некоторых окрестностей начальных данных, то у <tex>T</tex> окажется единственная неподвижная точка, следовательно, она и будет значением неявного отображения и теорема будет доказана.<br>
<tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0})</tex><br>
315
правок

Навигация