Изменения

Перейти к: навигация, поиск

Тестовая страница2

302 байта убрано, 08:13, 13 июня 2011
Нет описания правки
\dots\\
g_m(\overline x,\overline y)=0 \end{cases};</tex>
 
<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.
<wikitex>
Если выполняется следующее условие: $ f $ непрерывна, $ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $, то $ F(y) = \int\limits_a^{\infty} f(x, y) dx $ равномерно сходится на $ [c; d] $.
ВейерштрассПризнак равномерной сходимости несобственных интегралов
Условие
Пусть $ |f(x, y) | \le g(x)\ \forall x \ge a, \forall y \in [c; d] $.
<wikitex>
$ B (a, b) = \int\limits_0^1 x^{a - 1} (1 - x)^{b - 1} dx $
 
$ \Gamma (a) = \int\limits_0^{\infty} x^{a - 1} e^{-x} dx $
 
В обоих случаях: интегралы, зависящие от параметра.
 
Легко понять, что $ B (a, b) $ Сходится при $ a, b > 0 $; $ \Gamma(a) $ сходится при $ a > 0 $.
</wikitex>
№49. Интеграл Римана по прямоугольнику: критерий существования
<tex>(\bar{x_i}, \bar{y_i}) \in \Pi_{ij}</tex>
 
<tex>\sigma(f, \tau) = \sum\limits_{i= 0}^{n - 1} \sum\limits_{j = 0}^{m - 1} f(\bar{x_i}, \bar{y_j}) \delta x_i \delta y_j</tex>
 
<tex>|\Pi_{ij}| = \delta x_i \delta y_j</tex>
 
 
 
Двойной интеграл <tex>\iint\limits_\Pi f = \iint\limits_\Pi f(x, y) dx dy = \lim\limits_{\operatorname{rang} \tau \to 0} \sigma(f, \tau)</tex>
 
 
<tex>\underline{s}(f, \tau) = \sum\limits_{i, j} m_{ij} \delta x_i \delta y_j</tex>,
 
<tex>\overline{s}(f, \tau) = \sum\limits_{i, j} M_{ij} \delta x_i \delta y_j</tex>
 
если <tex>f</tex> - непрерывна на <tex> \Pi </tex>, то существует <tex>\iint\limits_\Pi f</tex>(достаточное условие интегрируемости).
* <tex>\exists \iint\limits_\Pi f \iff \forall m \ \exists \int\limits_{\Pi_m} f</tex>
* <tex>\iint\limits_\Pi f = \sum\limits_{m = 1}^p \, \iint\limits_{\Pi_m} f</tex>
 
№51. Формула повторного интегрирования для прямоугольника
А ВАС ЭТО НЕ СПРОСЯТ
№52. Критерий квадрируемости фигуры по Жордану
 
 
<tex>E \subset \mathbb{R}^2</tex> '''квадрируема по Жордану''', если существует <tex>\iint\limits_E 1</tex>. Значение этого интеграла называется 'площадью фигуры'.
 
№53. Условие существования интеграла по квадрируемому компакту
 
Условие
Пусть <tex>E</tex> - квадрируемый компакт на плоскости, <tex>f</tex> непрерывна на <tex>E</tex>. Тогда существует <tex>\iint\limits_E f</tex>.
 
 
№54. Формула повторного интегрирования в общем случае
А ВАС ЭТО НЕ СПРОСЯТ
№55. Вычисление площади фигуры в криволинейных координатах
№56. Замена переменных интегрирования в двойном интеграле
<tex>\mathcal{J}(u_1, \ldots, u_n) = \left|\begin{array}{ccc}\frac{\partial x_1}{\partial u_1} & \cdots & \frac{\partial x_1}{\partial u_n} \\\vdots & \ddots & \vdots \\\frac{\partial x_n}{\partial u_1} & \cdots & \frac{\partial x_n}{\partial u_n} \\\end{array}\right| \ne 0</tex>
 
<tex>\int\limits_E f(\bar x) d \bar x = \int\limits_{E'} f(\bar x(\bar u)) |\mathcal{J}(\bar u)| d \bar u</tex>
№57. Обзор формул для многократных интегралов
Анонимный участник

Навигация