Редактирование: Случайные графы

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 9: Строка 9:
 
}}
 
}}
 
{{Определение
 
{{Определение
|definition= Свойство <tex>A</tex> '''асимптотически почти наверное истинно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 1</tex>, где <tex>p(n)</tex> {{---}} вероятность графа <tex>G(n, p)</tex> обладать этим свойством.
+
|definition= Свойство <tex>A</tex> '''ассимптотически почти наверное истинно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 1</tex>
 
}}
 
}}
 
{{Определение
 
{{Определение
|definition= Свойство <tex>A</tex> '''асимптотически почти наверное ложно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 0</tex>, где <tex>p(n)</tex> {{---}} вероятность графа <tex>G(n, p)</tex> обладать этим свойством.
+
|definition= Свойство <tex>A</tex> '''ассимптотически почти наверное ложно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 0</tex>
 
}}
 
}}
  
 
== Существование треугольников в случайном графе ==
 
== Существование треугольников в случайном графе ==
 
{{Теорема
 
{{Теорема
|statement=Если <tex>p(n) = o(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> асимптотически почти наверное (далее а.п.н) не содержит треугольников.
+
|statement=Если <tex>p(n) = o(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н не содержит треугольников.
 
|proof=
 
|proof=
 
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник.
 
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник.
Строка 23: Строка 23:
 
Воспользуемся [[Неравенство Маркова| неравенством Маркова]]:
 
Воспользуемся [[Неравенство Маркова| неравенством Маркова]]:
  
<tex>P(T > 0) = P(T \geqslant 1) \leqslant E[T] = \sum\limits_{i, j, k}T_{i, j, k}p^3 = C^3_np^3 \sim \dfrac{n^3p^3}{6} \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
+
<tex>P(T > 0) = P(T \geqslant 1) \leqslant ET = \sum\limits_{i, j, k}T_{i, j, k}p^3 = C^3_np^3 \sim \dfrac{n^3}{6}p^3 \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
 
}}
 
}}
  
 
{{Теорема
 
{{Теорема
 
|statement=Если <tex>p(n) = \omega(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н содержит треугольник.
 
|statement=Если <tex>p(n) = \omega(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н содержит треугольник.
 
 
|proof=
 
|proof=
 
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник.
 
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник.
Строка 34: Строка 33:
 
Воспользуемся [[Неравенство Маркова#thCheb| неравенством Чебышева]]:
 
Воспользуемся [[Неравенство Маркова#thCheb| неравенством Чебышева]]:
  
<tex>P(T = 0) = P(T \leqslant 0) = P(E[T] - T \geqslant E[T]) \leqslant P(|E[T] - T| \geqslant E[T]) \leqslant \dfrac{D[T]}{(E[T])^2}</tex>.
+
<tex>P(T = 0) = P(T \leqslant 0) = P(ET - T \geqslant ET) \leqslant P(|ET - T| \geqslant ET) \leqslant \dfrac{DT}{(ET)^2}</tex>.
  
Найдем <tex>E[T^2]</tex>:
+
Найдем <tex>ET^2</tex>:
  
  
<tex>E[T^2] = E[(\sum\limits_{i, j, k}T_{i, j, k})^2]= E[\sum\limits_{i, j, k}T_{i, j, k})^2] + E[\sum\limits_{i, j, k, a, b, c}T_{i, j, k}T_{a, b, c}] =</tex>
+
<tex>ET^2 = E(\sum\limits_{i, j, k}T_{i, j, k})^2= E(\sum\limits_{i, j, k}(T_{i, j, k})^2) + E(\sum\limits_{i, j, k, a, b, c}T_{i, j, k}T_{a, b, c}) =</tex>
  
<tex>= E[T] + (C^3_nC^3_{n - 3} + C^3_nC^2_{n - 3})p^6 + 3C^3_n(n - 3)p^5 \sim \dfrac{n^3p^3}{6} + (\dfrac{n^6}{36} + \dfrac{n^5}{4})p^6 + \dfrac{n^4}{2}p^5 \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36} + \dfrac{n^4p^5}{2} \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36}</tex>
+
<tex>= ET + (C^3_nC^3_{n - 3} + C^3_nC^2_{n - 3})p^6 + 3C^3_n(n - 3)p^5 \sim \dfrac{n^3p^3}{6} + (\dfrac{n^6}{36} + \dfrac{n^5}{4})p^6 + \dfrac{n^4}{2}p^5 \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36} + \dfrac{n^4p^5}{2} \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36}</tex>
  
<tex>D[T] = E[T^2] - (E[T])^2 \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36} - \dfrac{n^6p^6}{36} = \dfrac{n^3p^3}{6}</tex>  
+
<tex>DT = ET^2 - (ET)^2 \sim \dfrac{n^3p^3}{6} + \dfrac{n^6p^6}{36} - \dfrac{n^6p^6}{36} = \dfrac{n^3p^3}{6}</tex>  
  
 
<tex>P(T = 0) \leqslant \dfrac{\dfrac{n^3p^3}{6}}{\dfrac{n^6p^6}{36}} = \dfrac{6}{p^3n^3} \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>
 
<tex>P(T = 0) \leqslant \dfrac{\dfrac{n^3p^3}{6}}{\dfrac{n^6p^6}{36}} = \dfrac{6}{p^3n^3} \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>
Строка 54: Строка 53:
 
|statement=Если <tex>c \geqslant 3</tex>, <tex>n \geqslant 100</tex>, <tex>p = \dfrac{c\ln n}{n}</tex>. Тогда <tex>P(G - связен) \rightarrow 1</tex>.
 
|statement=Если <tex>c \geqslant 3</tex>, <tex>n \geqslant 100</tex>, <tex>p = \dfrac{c\ln n}{n}</tex>. Тогда <tex>P(G - связен) \rightarrow 1</tex>.
 
|proof=  
 
|proof=  
Пусть <tex>X</tex> {{---}} индикаторная величина, равная нулю, если <tex>G</tex> связен, и <tex>k</tex>, если <tex>G</tex> содержит <tex>k</tex> компонент связности.
+
Пусть <tex>X</tex> {{---}} индикаторная величина, равная <tex>0</tex>, если <tex>G</tex> связен, и <tex>k</tex>, если <tex>G</tex> содержит <tex>k</tex> компонент связности.
  
 
<tex>X_i</tex> {{---}} число компонент связности размера <tex>i</tex>.
 
<tex>X_i</tex> {{---}} число компонент связности размера <tex>i</tex>.
Строка 62: Строка 61:
 
<tex>X_i = \sum\limits_{a_1,a_2, \dots , a_i} X_{a_1,a_2, \dots , a_i}</tex>
 
<tex>X_i = \sum\limits_{a_1,a_2, \dots , a_i} X_{a_1,a_2, \dots , a_i}</tex>
  
<tex>E[X_i] = \sum\limits_{a_1,a_2, \dots , a_i} E[X_{a_1,a_2, \dots , a_i}] = C_n^iEX_{1, 2, \dots, i} = C_n^i P(1, 2, \dots, i - комп.связности) \leqslant C_n^i (1 - p)^{i(n - i)}</tex>.
+
<tex>EX_i = \sum\limits_{a_1,a_2, \dots , a_i} EX_{a_1,a_2, \dots , a_i} = C_n^iEX_{1, 2, \dots, i} = C_n^i P(1, 2, \dots, i - комп.связности) \leqslant C_n^i (1 - p)^{i(n - i)}</tex>.
  
<tex>E[X] \sum\limits_{i = 1}^{n - 1} E[X_i] \leqslant \sum\limits_{i = 1}^{n - 1} C_n^i(1 - p)^{i(n - i)}</tex>
+
<tex>EX \sum\limits_{i = 1}^{n - 1} EX_i \leqslant \sum\limits_{i = 1}^{n - 1} C_n^i(1 - p)^{i(n - i)}</tex>
  
 
Последняя сумма симметрична (слагаемые при <tex>i = k</tex> и <tex>i = n - k</tex> равны), кроме того слагаемое при <tex>i = 1</tex> {{---}} наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при <tex>i \leqslant \dfrac{n}{8}</tex> и <tex>\dfrac{n}{8} < i \leqslant \dfrac{n}{2}</tex>).
 
Последняя сумма симметрична (слагаемые при <tex>i = k</tex> и <tex>i = n - k</tex> равны), кроме того слагаемое при <tex>i = 1</tex> {{---}} наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при <tex>i \leqslant \dfrac{n}{8}</tex> и <tex>\dfrac{n}{8} < i \leqslant \dfrac{n}{2}</tex>).
Строка 93: Строка 92:
 
{{Теорема
 
{{Теорема
 
|id=th1  
 
|id=th1  
|statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>E[N_z] \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>, то <tex>A</tex> а.п.н ложно.
+
|statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>N_z \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>, то <tex>A</tex> а.п.н ложно.
 
|proof=
 
|proof=
 
Воспользуемся [[Неравенство Маркова | неравенством Маркова]]:
 
Воспользуемся [[Неравенство Маркова | неравенством Маркова]]:
  
<tex>P(N_z > 0) = P(N_z \geqslant 1) \leqslant E[N_z] \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
+
<tex>P(N_z > 0) = P(N_z \geqslant 1) \leqslant EZ \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
 
}}
 
}}
  
 
{{Теорема
 
{{Теорема
 
|id=th2  
 
|id=th2  
|statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>E[N_z] \rightarrow \infty</tex>, при <tex>n \rightarrow \infty</tex>, и <tex>E[N_z^2] \leqslant (E[N_z])^2(1 + o(1))</tex> то <tex>A</tex> а.п.н истинно.
+
|statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>EN_z \rightarrow \infty</tex>, при <tex>n \rightarrow \infty</tex>, и <tex>EZ^2 = (EZ)^2(1 + o(1))</tex> то <tex>A</tex> а.п.н истинно.
 
|proof=
 
|proof=
 
Воспользуемся [[Неравенство Маркова#thCheb | неравенством Чебышева]]:
 
Воспользуемся [[Неравенство Маркова#thCheb | неравенством Чебышева]]:
  
<tex>P(N_z = 0) = P(N_z \leqslant 0) = P(E[N_z] - N_z \geqslant E[N_z]) \leqslant P(|E[N_z] - N_z| \geqslant E[N_z]) \leqslant \dfrac{D[N_z]}{(E[N_z])^2} \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
+
<tex>P(N_z = 0) = P(N_z \leqslant 0) = P(EN_z - N_z \geqslant EN_z) \leqslant P(|EN_z - N_z| \geqslant EN_z) \leqslant \dfrac{DN_z}{(EN_z)^2} \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>.
 
}}
 
}}
  
== Графы, имеющие диаметр два ==
+
== Графы имеющие диаметр два ==
{{Определение
 
|definition=<tex>A</tex> {{---}} некоторое свойство случайного графа. <tex>p</tex> называется '''пороговой функцией''' (англ. ''threshold function''), если граф <tex>G(n, cp)</tex> при <tex>c < 1</tex> а.п.н не имеет такого свойства, а при <tex>c > 1</tex> а.п.н имеет.
 
}}
 
 
{{Теорема
 
{{Теорема
|statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} пороговая функция.
+
|statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} порог.
 
|proof=
 
|proof=
Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если кратчайшее расстояние между <tex>u</tex> и <tex>v</tex> меньше двух. <tex>B_{i, j}</tex> {{---}} индикаторная величина, равная <tex>1</tex>, если <tex>i</tex> и <tex>j</tex> являются плохой парой.
+
Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если <tex>dist(u, v) > 2</tex>. <tex>B_{i, j}</tex> {{---}} индикаторная величина, равная <tex>1</tex>, если <tex>i</tex> и <tex>j</tex> плохая пара.
 
<tex>N_z = \sum\limits_{i, j} B_{i,j}</tex>
 
<tex>N_z = \sum\limits_{i, j} B_{i,j}</tex>
 
<tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex>
 
<tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex>
  
Сначала докажем, что при <tex>c > sqrt{2}</tex>, граф а.п.н не имеет диаметр, равный двум. Для этого оценим матожидание <tex>N_z</tex>.
+
Сначала докажем, что при <tex>c > sqrt{2}</tex>, граф а.п.н не имеет диаметр два. Для этого оценим матожидание <tex>N_z</tex>.
 
<tex>EN_z = C_n^2(1 - p)(1 - p^2)^{n - 2} \approx \dfrac{n^2}{2}(1 - c\sqrt{\dfrac{\ln n}{n}})(1 - \dfrac{c^2\ln n}{n})^{n - 2} \leqslant \dfrac{n^2}{2}e^{-c^2\ln n} = \dfrac{n^{2 - c^2}}{2}</tex>
 
<tex>EN_z = C_n^2(1 - p)(1 - p^2)^{n - 2} \approx \dfrac{n^2}{2}(1 - c\sqrt{\dfrac{\ln n}{n}})(1 - \dfrac{c^2\ln n}{n})^{n - 2} \leqslant \dfrac{n^2}{2}e^{-c^2\ln n} = \dfrac{n^{2 - c^2}}{2}</tex>
  
При <tex>c > \sqrt{2}</tex> последнее выражение стремится к <tex>0</tex>, по [[#th1 | вышедоказанному ]] граф а.п.н. не имеет диаметр, равный двум.
+
При <tex>c > \sqrt{2}</tex> последнее выражение стремится к <tex>0</tex>, по [[#th1 | первой теореме ]] граф а.п.н. не имеет диаметр два.
  
 
Рассмотрим <tex>c < \sqrt{2}</tex>:
 
Рассмотрим <tex>c < \sqrt{2}</tex>:
Строка 139: Строка 135:
 
<tex>\sum EB_{i,j}B_{i,l} \leqslant n^{3 - 2c}</tex>
 
<tex>\sum EB_{i,j}B_{i,l} \leqslant n^{3 - 2c}</tex>
  
В итоге: <tex>EN_z^2 \leqslant n^{2 - c^2} + n^{4 - 2c^2} + n^{3 - 2c^2}</tex>. Из этого следует, что <tex>EN_z \leqslant (EN_z)^2(1 + o(1))</tex>, а значит граф а.п.н имеет диаметр, равный двум при <tex>c > \sqrt{2}</tex>.
+
В итоге: <tex>EN_z^2 \leqslant n^{2 - c^2} + n^{4 - 2c^2} + n^{3 - 2c^2}. Из этого следует, что <tex>EN_z \leqslant (EN_z)^2(1 + o(1))</tex>, а значит граф а.п.н имеет диаметр два при <tex>c > \sqrt{2}</tex>.
 
}}
 
}}
 +
  
 
== См. также ==
 
== См. также ==
Строка 146: Строка 143:
 
* [[Дисперсия случайной величины]]
 
* [[Дисперсия случайной величины]]
 
* [[Математическое ожидание случайной величины]]
 
* [[Математическое ожидание случайной величины]]
 
== Источники информации ==
 
* [https://www.coursera.org/learn/sluchajnye-graphy/ Coursera {{---}} Онлайн-курс]
 
* [https://en.wikipedia.org/wiki/Chernoff_bound Wikipedia {{---}} Random graphs]
 
* Avrim Blum, John Hopcroft, and Ravindran Kannan. «Foundations of Data Science» {{---}} «Cambridge University Press», 2013 г. {{---}} 245-260 стр. {{---}} ISBN 978-1108485067
 
 
 
[[Категория: Дискретная математика и алгоритмы]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)