Редактирование: Случайные графы
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 62: | Строка 62: | ||
<tex>X_i = \sum\limits_{a_1,a_2, \dots , a_i} X_{a_1,a_2, \dots , a_i}</tex> | <tex>X_i = \sum\limits_{a_1,a_2, \dots , a_i} X_{a_1,a_2, \dots , a_i}</tex> | ||
− | <tex> | + | <tex>EX_i = \sum\limits_{a_1,a_2, \dots , a_i} EX_{a_1,a_2, \dots , a_i} = C_n^iEX_{1, 2, \dots, i} = C_n^i P(1, 2, \dots, i - комп.связности) \leqslant C_n^i (1 - p)^{i(n - i)}</tex>. |
− | <tex> | + | <tex>EX \sum\limits_{i = 1}^{n - 1} EX_i \leqslant \sum\limits_{i = 1}^{n - 1} C_n^i(1 - p)^{i(n - i)}</tex> |
Последняя сумма симметрична (слагаемые при <tex>i = k</tex> и <tex>i = n - k</tex> равны), кроме того слагаемое при <tex>i = 1</tex> {{---}} наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при <tex>i \leqslant \dfrac{n}{8}</tex> и <tex>\dfrac{n}{8} < i \leqslant \dfrac{n}{2}</tex>). | Последняя сумма симметрична (слагаемые при <tex>i = k</tex> и <tex>i = n - k</tex> равны), кроме того слагаемое при <tex>i = 1</tex> {{---}} наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при <tex>i \leqslant \dfrac{n}{8}</tex> и <tex>\dfrac{n}{8} < i \leqslant \dfrac{n}{2}</tex>). |