Редактирование: Случайные графы
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 102: | Строка 102: | ||
{{Теорема | {{Теорема | ||
|id=th2 | |id=th2 | ||
− | |statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>E[N_z] \rightarrow \infty</tex>, при <tex>n \rightarrow \infty</tex>, и <tex>E[ | + | |statement= Пусть <tex>N_z</tex> {{---}} число объектов в графе <tex>G(n, p)</tex>. <tex>A = \{G | N_z(G) > 0 \}</tex> {{---}} свойство. Тогда, если <tex>E[N_z] \rightarrow \infty</tex>, при <tex>n \rightarrow \infty</tex>, и <tex>E[Z^2] \leqslant (E[Z])^2(1 + o(1))</tex> то <tex>A</tex> а.п.н истинно. |
|proof= | |proof= | ||
Воспользуемся [[Неравенство Маркова#thCheb | неравенством Чебышева]]: | Воспользуемся [[Неравенство Маркова#thCheb | неравенством Чебышева]]: |