Совпадение множества языков МП-автоматов и контекстно-свободных языков

Материал из Викиконспекты
Перейти к: навигация, поиск

Построение МП-автомата по заданной КС-грамматике

Теорема:
Класс контекстно-свободных языков ([math]\mathrm{CFG}[/math]) является подмножеством класса языков, задаваемых автоматами с магазинной памятью ([math]\mathrm{PDA}[/math]), то есть по любой КС-грамматике можно построить МП-автомат, задающий тот же язык, что и исходная грамматика.
Доказательство:
[math]\triangleright[/math]

Пусть дана КС-грамматика [math]\Gamma =\langle \Sigma, N, S, P\rangle[/math]. Поскольку МП-автоматы с допуском по пустому стеку и по допускающему состоянию эквивалентны, достаточно построить автомат с допуском по пустому стеку.

Построим автомат из одного состояния [math]q[/math] с входным алфавитом [math]\Sigma[/math], стековым алфавитом [math]N \cup \Sigma[/math], маркером дна [math]S[/math] и функцией перехода [math]\delta[/math], определённой ниже. Формально [math]A = \langle \Sigma, N \cup \Sigma, \{q\}, q, S, \delta \rangle[/math], где [math]\delta[/math] задаётся следующим образом:

1) для каждого правила вывода [math]V \rightarrow \gamma \in P[/math] определим [math]\delta(q, \varepsilon, V) = \{(q, \gamma)\}[/math];

2) для каждого терминала [math]a[/math] определим [math] \delta(q, a, a) = \{(q, \varepsilon)\} [/math].

Покажем, что язык, допускаемый автоматом [math]A[/math], совпадает с языком грамматики [math]\Gamma[/math], то есть что [math]S \Rightarrow^* w \iff (q, w, S) \vdash^* (q, \varepsilon, \varepsilon)[/math]:

  • Пусть [math]S \Rightarrow^* w[/math]. Рассмотрим левосторонний вывод [math]S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow ... \Rightarrow \gamma_n=w[/math]. Обозначим как [math]v_i[/math] наибольший префикс [math]\gamma_i[/math], состоящий только из терминалов, а [math]\alpha_i[/math] — остаток [math]\gamma_i[/math], то есть [math]\gamma_i = v_i\alpha_i[/math], причём [math]v_i \in \Sigma^*[/math], а [math]\alpha_i[/math] начинается с нетерминала (либо пустая). С помощью индукции по [math]i[/math] докажем, что [math](q, w, S) \vdash^* (q, x_i, \alpha_i)[/math] для [math]i \leq n[/math], где [math]x_i[/math] — то, что остаётся после чтения [math]v_i[/math], то есть [math]v_ix_i = w[/math]. Иными словами, переходя по автомату по символам [math]v_i[/math], можно оставить на стеке [math]\alpha_i[/math].
    • База ([math]i = 0[/math]):
      В этом случае [math]\gamma_0 = S[/math], поэтому [math]v_0 = \varepsilon, \alpha_0 = S, x_i = w[/math]. Очевидно, [math](q, w, S) \vdash^* (q, w, S)[/math].
    • Индукционный переход:
      Пусть [math](q, w, S) \vdash^* (q, x_i, \alpha_i)[/math] для [math]i \lt n[/math]. [math]\alpha_i[/math] по определению начинается с какого-то нетерминала [math]V[/math] (если [math]\alpha_i = \varepsilon[/math], то получена [math]\gamma_n[/math], а мы предположили, что [math]i \lt n[/math]), то есть [math]\alpha_i = Vq_i[/math] Поскольку мы рассматриваем левосторонний вывод, то переход [math]\gamma_i \Rightarrow \gamma_{i + 1}[/math] включает замену нетерминала [math]V[/math] на какую-то цепочку [math]\beta[/math] по правилу [math]V \rightarrow \beta[/math]. Так как [math]\gamma_i = v_i \alpha_i = v_i V q_i[/math], то [math]\gamma_{i + 1} = v_i \beta q_i = v_{i + 1} \alpha_{i + 1}[/math]. В автомате [math]A[/math] по построению присутствует правило перехода [math]\delta(q, \varepsilon, V) = \{(q, \beta)\}[/math], поэтому [math]\alpha_i[/math] на стеке можно заменить на [math]\beta q_i[/math]. Заметим, что [math]\beta q_i[/math] представляет собой конкатенацию нескольких терминалов из [math]w[/math] и [math]\alpha_{i + 1}[/math]. Считывая очередные символы строки [math]w[/math], будем переходить по автомату, убирая терминалы со стека, пока не встретим нетерминал. Таким образом, на стеке окажется [math]\alpha_{i+1}[/math]. Получили, что [math](q, x_i, \alpha_i) \vdash^* (q, x_{i + 1}, \alpha_{i + 1})[/math], а значит, [math](q, w, S) \vdash^* (q, x_{i + 1}, \alpha_{i + 1})[/math]. Индукционный переход доказан.
Заметим, что [math]\alpha_n = \varepsilon, v_n = w, x_n = \varepsilon[/math], поэтому [math](q, w, S) \vdash^* (q, \varepsilon, \varepsilon)[/math].
  • Докажем в обратную сторону. Пусть [math](q, w, S) \vdash^* (q, \varepsilon, \varepsilon)[/math]. Воспользуемся индукцией по числу переходов в автомате и докажем для любой строки [math]x[/math] и маркера дна [math]M \in N[/math], что если [math](q, x, M) \vdash^* (q, \varepsilon, \varepsilon)[/math], то [math]N \Rightarrow^* x[/math].
    • База (1 переход):
      Если [math](q, x, N) \vdash^* (q, \varepsilon, \varepsilon)[/math], то [math]x = \varepsilon[/math] и в грамматике присутствует правило [math]N \rightarrow \varepsilon[/math], по которому выводится [math]\varepsilon = x[/math].
    • Индукционный переход:
      Предположим, что автомат [math]A[/math] совершает [math]n[/math] шагов ([math]n \gt 1[/math]). Изначально на вершине стеке находится [math]S[/math], поэтому первый переход совершается по одному из правил первого типа, и на стеке оказывается последовательность из терминалов и нетерминалов [math]Y_1 Y_2 \ldots Y_k[/math]. В процессе следующих [math]n - 1[/math] переходов автомат прочитает строку [math]x[/math] и поочерёдно вытолкнет со стека [math]Y_1 Y_2 \ldots Y_k[/math]. Разобьём [math]w[/math] на подстроки [math]x_1 x_2 \ldots x_k[/math], где [math]x_1[/math] — порция входа, прочитанная до выталкивания [math]Y_1[/math] со стека, [math]x_2[/math] — следующая порция входа, прочитанная до выталкивания [math]Y_2[/math] со стека и так далее. Формально можно заключить, что [math](q, x_i x_{i + 1} \ldots x_k, Y_i) \vdash^* (q, x_{i + 1} \ldots x_k, \varepsilon)[/math], причём менее чем за [math]n[/math] шагов. Если [math]Y_i[/math] — нетерминал, то по индукционному предположению имеем, что [math]Y_i \Rightarrow^* x_i[/math]. Если же [math]Y_i[/math] — терминал, то должен совершаться только один переход, в котором проверяется совпадение [math]x_i[/math] и [math]Y_i[/math]. Значит, [math]Y_i \Rightarrow^* x_i[/math] за 0 шагов.
      Таким образом, получаем, что [math]N \Rightarrow Y_1 Y_2 \ldots Y_k \Rightarrow^* x_1 x_2 \ldots x_k = x[/math].
Подставляя [math]w[/math] вместо [math]x[/math] и [math]S[/math] вместо [math]N[/math], получаем, что [math]S \Rightarrow^* w[/math]
[math]\triangleleft[/math]

Пример

Преобразуем грамматику выражений в МП-автомат. Пусть дана грамматика:

  • [math] I \rightarrow a|b|I1|I0|Ia|Ib [/math],
  • [math] E \rightarrow I|E*E|E+E|(E) [/math].

Множеством входных символов является [math] \{a,b,1,0,(,),+,*\} [/math]. Эти символы вместе с переменными [math] I,E [/math] образуют магазинный алфавит. Функция переходов определена следующим образом:

a) [math] \delta(q,\varepsilon,I)={(q,a), (q,b), (q,Ia), (q,Ib), (q,I0), (q,I1)};[/math]

b) [math] \delta(q,\varepsilon,E)={(q,I), (q,E+E), (q,E*E), (q,(E))};[/math]

c) [math] \delta(q, a, a) = \{(q, \varepsilon)\}[/math]; [math] \delta(q, b, b) = \{(q, \varepsilon)\}[/math]; [math] \delta(q, 0, 0) = \{(q, \varepsilon)\}[/math]; [math] \delta(q, 1, 1) = \{(q, \varepsilon)\}[/math].

Пункты a,b образованы по первому правилу построения функции переходов, а пункт c по второму.


Построение КС-грамматики по МП-автомату

Теорема:
Класс языков, задаваемых автоматами с магазинной памятью ([math]\mathrm{PDA}[/math]), является подмножеством класса контекстно-свободных языков ([math]\mathrm{CFG}[/math]), то есть по любому МП-автомату можно построить КС-грамматику, задающую тот же язык, что и допускаемый автоматом.
Доказательство:
[math]\triangleright[/math]

Пусть дан МП-автомат с допуском по пустому стеку [math]A = \langle \Sigma, \Pi, Q, q_0 \in Q, z_0, \delta \rangle[/math]. Как отмечалось ранее, предположение о допуске по пустому стеку не умаляет общности. Построим эквивалентную ему КС-грамматику [math]\Gamma = \langle \Sigma, N, S, P \rangle[/math]. В качестве нетерминалов будем использовать конструкции вида [math][pXq][/math] (где [math] p, q \in Q[/math], [math]X \in \Pi[/math]), которая означает, что в процессе изменения состояния автомата от [math]p[/math] до [math]q[/math] символ [math]X[/math] окончательно удаляется из стека. Также введём стартовый нетерминал [math]S[/math]. Таким образом, [math]N = Q \times \Pi \times Q \cup S[/math].

Правила вывода [math]P[/math] построим следующим образом:

1) для каждого состояния [math]p \in Q[/math] добавим правило [math]S \rightarrow [q_0 z_0 p][/math];

2) для каждого перехода [math]\delta(p, a, X) = \{(r, \gamma_1 \gamma_2 \ldots \gamma_k)\}[/math] сделаем следующее: для всех упорядоченных списков состояний [math]\{z_1, z_2 \ldots z_k\} \in Q^k[/math] добавим правило [math][p X z_k] \rightarrow a [r \gamma_1 z_1] [z_1 \gamma_2 z_2] \ldots [z_{k - 1} \gamma_k z_k][/math], если [math]k \gt 0[/math], и [math][p X r] \rightarrow a[/math], если [math]k = 0[/math].

Докажем корректность неформального описания нетерминалов [math][pXq][/math], то есть что [math][pXq] \Rightarrow^* w \iff (p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math]:

  • Пусть [math](p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math]. Докажем, что [math][pXq] \Rightarrow^* w[/math], используя индукцию по числу переходов в автомате.
    • База (1 переход):
      Раз выполняется только один переход, то длина [math]w[/math] не больше единицы и [math]\{(q, \varepsilon)\} \in \delta(p, w, X)[/math], поэтому правило [math][pXq] \rightarrow w[/math] по построению должно присутствовать в [math]P[/math].
    • Индукционный переход:
      Предположим, что [math](p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math] за [math]n \gt 1[/math] шагов. Первый переход имеет вид [math](p, w, X) \vdash (r, x, \gamma_1 \gamma_2 \ldots \gamma_k) \vdash^* (q, \varepsilon, \varepsilon)[/math], где [math]w = ax[/math] ([math]a[/math] — символ из [math]\Sigma[/math] или [math]\varepsilon[/math]). Значит, [math]\{(r, \gamma_1 \gamma_2 \ldots \gamma_k)\} \in \delta(p, a, X)[/math]. По построению в грамматике должно присутствовать правило [math][p X z_k] \rightarrow a [r\gamma_1 z_1] [z_1 \gamma_2 z_2] \ldots [z_{k - 1} \gamma_k z_k][/math] для любой последовательности состояний [math]\{z_i\}[/math]. Пусть [math]x = w_1 w_2 \ldots w_k[/math], где [math]w_i[/math] — входная цепочка, которая прочитывается до удаления [math]\gamma_i[/math] со стека, то есть найдётся такая последовательность состояний [math]\{z_i\}[/math], что [math](z_{i - 1}, w_i, \gamma_i) \vdash^* (z_i, \varepsilon, \varepsilon)[/math], причём заканчивается всё в [math]q = z_k[/math]. Заметим, что все эти выводы содержат менее [math]n[/math] переходов, а значит, по индукционному предположению [math][z_{i - 1} \gamma_i z_i] \Rightarrow^* w_i[/math] для всех [math]i[/math].
      Собирая вышесказанное, получаем [math][p X z_k] \Rightarrow a [r\gamma_1 z_1] [z_1 \gamma_2 z_2] \ldots [z_{k - 1} \gamma_k z_k] \Rightarrow^* a w_1 w_2 \ldots w_k = w[/math]. Так как [math]z_k = q[/math], то [math][pXq] \Rightarrow^* w[/math], тем самым индукционный переход доказан.
  • Докажем в обратную сторону. Пусть [math][pXq] \Rightarrow^* w[/math]. Докажем, что [math](p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math], используя индукцию по числу шагов в порождении.
    • База (1 шаг):
      Если [math][pXq] \Rightarrow^* w[/math] за один шаг, то в [math]\Gamma[/math] должно быть правило вывода [math][pXq] \rightarrow w[/math], а значит, в автомате должен быть переход [math]\delta(p, w, X) = \{(q, \varepsilon)\}[/math] и [math]w[/math] не может иметь длину больше единицы. Таким образом, [math](p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math].
    • Индукционный переход:
      Предположим, что [math][pXq] \Rightarrow^* w [/math] за [math]n \gt 1[/math] шагов. По построению вывод должен иметь вид [math][p X z_k] \Rightarrow a [r \gamma_1 z_1] [z_1 \gamma_2 z_2] \ldots [z_{k - 1} \gamma_k z_k] \Rightarrow^* w[/math], где [math]z_k = q[/math] и [math](r, \gamma_1 \gamma_2 \ldots \gamma_k) \in \delta(p, a, X)[/math]. Вновь представим [math]w[/math] в виде [math]w = a w_1 w_2 \ldots w_k[/math] так, что [math][z_{i - 1} \gamma_i z_i] \Rightarrow^* w_i[/math]. Так как все эти выводы содержат менее [math]n[/math] шагов, то по индукционному предположению для всех [math]i[/math] выполнено [math](z_{i - 1}, w_i, \gamma_i) \vdash^* (z_i, \varepsilon, \varepsilon)[/math]. Собирая всё вместе, получаем [math](r, w_1 w_2 \ldots w_k, \gamma_1 \gamma_2 \ldots \gamma_k) \vdash^* (z_1, w_2 w_3 \ldots w_k, \gamma_2 \gamma_3 \ldots \gamma_k) \vdash^* \ldots \vdash^* (z_k, \varepsilon, \varepsilon)[/math]. Так как [math](r, \gamma_1 \gamma_2 \ldots \gamma_k) \in \delta(p, a, X)[/math] и [math]z_k = q[/math], то в итоге [math](p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math].
Таким образом, мы доказали, что [math][pXq] \Rightarrow^* w \iff (p, w, X) \vdash^* (q, \varepsilon, \varepsilon)[/math]. Заметим, что [math]S \Rightarrow^* w[/math] тогда и только тогда, когда найдётся [math]p[/math], что [math][q_0 z_0 p] \Rightarrow^* w[/math]. По доказаному выше это равносильно тому, что [math](q0, w, z0) \vdash^* (p, \varepsilon, \varepsilon)[/math], то есть что [math]A[/math] допускает [math]w[/math] по пустому стеку. Суммируя всё вышесказанное, получаем, что построенная грамматика [math]\Gamma[/math] порождает слово [math]w[/math] тогда и только тогда, когда оно допускается автоматом [math]A[/math].
[math]\triangleleft[/math]

Пример

Пусть у нас имеется [math] P=(\{q\},\{i,e\},\{Z\},\delta,q,Z)[/math], функция [math] \delta [/math] задана следующим образом:

  • [math] \delta(q,i,Z)=\{(q,ZZ)\}[/math],
  • [math] \delta(q,e,Z)=\{(q,\varepsilon)\}[/math].

Так как [math] P [/math] имеет один магазинный символ и одно состояние, то грамматика строится просто. У нас будет всего две переменные:

  • a) [math] S [/math] — стартовый символ.
  • b) [math] [qZq] [/math] — единственная тройка, которую можно собрать из наших состояний и магазинных символов.

Также грамматика имеет следующие продукции:

  • 1. Единственной продукцией для [math] S [/math] является [math] S \rightarrow [qZq] [/math]. Но если бы у автомата было [math] n [/math] состояний, то тут бы имелось и [math] n [/math] продукций.
  • 2. Из того факта, что [math] \delta(q,i,Z) [/math] содержит [math] (q,ZZ)[/math], получаем продукцию [math] [qZq] \rightarrow i[qZq][qZq] [/math]. Если бы у автомата было n состояний, то такое правило порождало бы [math] n^2 [/math] продукций.
  • 3. Из [math] \delta(q,e,Z)=\{(q,\varepsilon)\} [/math] получаем продукцию [math] [qZq] \rightarrow \varepsilon [/math]

Для удобства тройку [math] [qZq] [/math] можно заменить символом [math] A [/math], в таком случае грамматика состоит из следующих продукций:

  • [math] S \rightarrow A[/math]
  • [math] A \rightarrow iAA | \varepsilon[/math]

В действительности можно заметить, что [math]S[/math] и [math]A[/math] порождают одни и те же цепочки, поэтому их можно обозначить одинаково, итого: [math] G=(\{S\},\{i,e\},\{S \rightarrow iSS| \varepsilon\},S)[/math]


Эквивалентность языков МП-автоматов и КС-языков

Теорема (об эквивалентности языков МП-автоматов и КС-языков):
Множество языков, допускаемых МП-автоматами, совпадает с множеством контекстно-свободных языков.
Доказательство:
[math]\triangleright[/math]
Первая теорема гласит, что [math] \mathrm{CFG} \subseteq \mathrm{PDA} [/math], а вторая — что [math] \mathrm{PDA} \subseteq \mathrm{CFG} [/math]. Таким образом, [math] \mathrm{PDA} = \mathrm{CFG} [/math].
[math]\triangleleft[/math]

Замечания

Утверждение:
Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат с одним состоянием.
[math]\triangleright[/math]
Построим КС-грамматику по данному автомату, затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что этот автомат будет иметь одно состояние, что и требовалось доказать.
[math]\triangleleft[/math]
Утверждение:
Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат, в любом переходе которого на стек кладётся не больше двух символов.
[math]\triangleright[/math]
Построим КС-грамматику по данному автомату и приведём её к нормальной форме Хомского. Затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что в нормальной форме Хомского правые части всех правил имеют длину не больше двух, поэтому в любом переходе в полученном автомате на стек кладётся не больше двух символов.
[math]\triangleleft[/math]
Утверждение:
Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат без [math]\varepsilon[/math]-переходов.
[math]\triangleright[/math]
Построим КС-грамматику по данному автомату, затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что этот автомат не будет иметь [math]\varepsilon[/math]-переходов, что и требовалось доказать.
[math]\triangleleft[/math]

Литература

  • Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 251.