Изменения

Перейти к: навигация, поиск

Сопряжённый оператор

159 байт добавлено, 23:50, 31 января 2019
м
Дмитрий Мурзин переименовал страницу Сопряженный оператор в Сопряжённый оператор: Ёфикация
{{В разработке}}
 
[[Спектр линейного оператора|<<]][[Компактный оператор |>>]]
Все рассматриваемые далее пространства считаем Банаховыми.
Надо показать, что <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>.
Рассмотрим <tex> F_1 = \left\{ z + ty \mid z \in \operatorname{Cl}(R(A)), y \notin \operatorname{Cl}(R(A)), t \in \mathbb{R} \right\} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности <tex>\operatorname{Cl}(R(A))</tex>.
Покажем, что <tex>F_1</tex> -- подпространство <tex>F</tex>. Для этого нам осталось проверить замкнутость <tex>F_1</tex>:
Рассмотрим значение <tex>\widetilde{\varphi_0}(y)</tex>:
* С одной стороны, <tex>\widetilde{\varphi_0}(y) = \varphi_0(y) = \varphivarphi_0(0 + 1 y) = 1</tex>
* С другой стороны, <tex>y \in (\operatorname{Ker}A^*)^\perp</tex>, а значит, на любом функционале из ядра <tex>A^*</tex>, в том числе, и на <tex>\widetilde{\varphi_0}</tex>, должно выполняться <tex>\widetilde{\varphi_0}(y) = 0</tex>
<tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>.
Покажем, что <tex>\widetilde{A}</tex> — ограничен: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|</tex>. Теперь Для этого перейдем от классов эквивалентности к их представителям. Так как <tex>\|[x]\| = \inf\limits_{x \in [x]} \|x\| = 1</tex>, найдется <tex>x \in [x]</tex>, такой, что <tex>\|x\| \le 2</tex> (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение <tex>Ax</tex> одно и тоже для любого <tex>x\in[x]</tex>). Тогда: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\| \le \sup\limits_{\|x\| \le 2} \|Ax\| \le \sup\limits_{\|y\| \le 1} \|A(2 y)\| \le 2 \sup\limits_{\|y\| \le 1} \|Ay\| = 2 \|A\|</tex>, так как <tex>\|A\|</tex> был ограничен, <tex>\widetilde{A}</tex> тоже окажется ограниченным.
Тогда по [[Теорема Банаха об обратном операторе#Теорема Банаха о гомеоморфизме|теореме Банаха об гомеоморфизме]] существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1} (y) \| \le m \|y\| < 2m \|y\|</tex>. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого <tex> x' \in A^{-1}(y) </tex>, что <tex> \| x' \| < 2m\| y \| </tex>.
<tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex>

Навигация