Изменения

Перейти к: навигация, поиск

Сортировка подсчетом сложных объектов

8740 байт убрано, 00:09, 1 февраля 2019
м
{{В разработке}} == Постановка задачи ==Иногда бывает очень желательно применить быстрый алгоритм #перенаправление [[Сортировка подсчетом|сортировки подсчетом]] для упорядочивания набора каких-либо "подсчётом#Сортировка сложных" данных. Под "сложными объектами" здесь подразумеваются структуры, содержащие в себе несколько полей. Одно из них мы выделим и назовем ключом, сортировка будет идти именно по нему (предполагается, что значения, принимаемые ключом - целые числа в диапазоне от <tex>0</tex> до <tex>k-1</tex>). Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой {{---}} использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа.  == Использование списков ==Пусть далее исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. Сделаем из каждой ячейки массива <tex>B</tex> список, в который будем добавлять структуры с одинаковыми ключами. [[Файл:List_solution.png|500px|]] Этот вариант плох тем, что надо поддерживать сам список, что не является самым простым решением. Еще придется хранить дополнительную информацию в виде ссылок на следующий элемент в списке. И кроме того, такое представление отсортированного массива неудобно в использовании.Избавиться от этих недостатков можно используя другую модификацию алгоритма сортировки подсчетом. == Подсчет числа различных ключей ===== Описание ===Здесь исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>B</tex> того же размера. Кроме того используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. * Пройдем по исходному массиву <tex>A</tex> и запишем в <tex>P[i]</tex> количество структур, ключ которых равен <tex>i</tex>. [[Файл:Building_P.png]] * Мысленно разобьем массив <tex>B</tex> на <tex>k</tex> блоков, длина каждого из которых равна соответственно <tex>P[1]</tex>, <tex>P[2]</tex>, ..., <tex>P[k]</tex>.[[Файл:Splitting_B_w_colors.png]] * Теперь массив <tex>P</tex> нам больше не нужен. Превратим его в массив, хранящий в <tex>P[i]</tex> сумму элементов от <tex>0</tex> до <tex>i-1</tex> старого массива <tex>P</tex>. [[Файл:P_after_adding.png]] * Теперь "сдвинем" массив <tex>P</tex> на элемент вперед: в новом массиве <tex>P[0] = 0</tex>, а для <tex>i > 0</tex> <tex>P[i] = P_{old}[i-1]</tex>, где <tex>P_{old}</tex> - старый массив <tex>P</tex>. <br> Это можно сделать за один проход по массиву <tex>P</tex>, причем одновременно с предыдущим шагом. <br> После этого действия в массиве <tex>P</tex> будут хранится индексы массива <tex>B</tex>. <tex>P[key]</tex> указывает на начало блока в <tex>B</tex>, соответствующего ключу <tex>key</tex>.[[Файл:P_as_array_of_pointers.png]] * Произведем саму сортировку. Еще раз пройдем по исходному массиву <tex>A</tex> и для всех <tex>i \in [0, n-1]</tex> будем помещать структуру <tex>A[i]</tex> в массив <tex>B</tex> на место <tex>P[A[i].key]</tex>, а затем увеличивать <tex>P[A[i].key]</tex> на <tex>1</tex>. Здесь <tex>A[i].key</tex> {{---}} это ключ структуры, находящейся в массиве <tex>A</tex> на <tex>i</tex>-том месте. [[Файл:Sorting_A.png]] Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей). Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве <tex>A</tex>. === Псевдокод === Здесь <tex>A</tex> и <tex>B</tex> {{---}} массивы структур размера <tex>n</tex>, с индексами от <tex>0</tex> до <tex>n-1</tex>.<tex>P</tex> {{---}} целочисленный массив размера <tex>k</tex> (<tex>k</tex> - количество различных ключей), с индексами от <tex>0</tex> до <tex>k-1</tex>. <tex>i</tex>, <tex>carry</tex>, <tex>temporary</tex> {{---}} целочисленные переменные.  ComplexCountingSort for i = 0 to k - 1 P[i] = 0; for i = 0 to length[A] - 1 P[A[i].key] = P[A[i].key] + 1; carry = 0; for i = 0 to k - 1 temporary = P[i]; P[i] = carry; carry = carry + temporary; for i = 0 to length[A] - 1 B[P[A[i].key]] = A[i]; P[A[i].key] = P[A[i].key] + 1; Здесь шаги 3 и 4 из описания объединены в один цикл.Обратите внимание, что в последнем цикле инструкцией B[P[A[i].key]] = A[i];копируется структура <tex>A[i]</tex> целиком, а не только её ключ. === Анализ ===Весь алгоритм состоит из двух проходов по массиву <tex>A</tex> размера <tex>n</tex> и одного прохода по массиву <tex>P</tex>, размера <tex>k</tex>.Его трудоемкость, таким образом, равна <tex> O(n + k)</tex>. На практике сортировку подсчетом имеет смысл применять, если <tex>k</tex> значительно меньше <tex>n</tex>, поэтому можно считать время работы алгоритма равным <tex> O(n)</tex>.Как и в обычной сортировке подсчетом, алгоритму требуется <tex> O(n + k)</tex> дополнительной памяти. == Источники ==* [http://ru.wikipedia.org/wiki/Сортировка_подсчётом Википедия {{---}} Сортировка подсчетом]* [http://en.wikipedia.org/wiki/Counting_sort Wikipedia {{---}} Counting sort]* Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 224-226. [[Категория: Дискретная математика и алгоритмы]][[Категория: Сортировкиобъектов]]

Навигация