Изменения

Перейти к: навигация, поиск

Специальные формы КНФ

4938 байт добавлено, 19:39, 4 сентября 2022
м
rollbackEdits.php mass rollback
Рассмотрим две формы, с помощью которых можно представить формулы, заданные в [[Определение булевой функции#Представление булевых функций|конъюнктивной нормальной форме]], то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов:__TOC__
Рассмотрим две формы, с помощью которых можно представить формулы, заданные в [[Определение булевой функции#Представление булевых функций|конъюнктивной нормальной форме]], то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Для двух этих форм существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение <tex>1</tex>, в то время, как для обычной функции, не представленной данной формой, эта задача является [[Примеры NP-полных языков. Теорема Кука|<tex>\mathrm{NP}</tex>-полной]]. Этот факт интересен потому, что, имея большое количество функций, которые можно свести к форме Хорна или Крома, мы сможем гарантированно вычислять необходимое нам условие за полиномиальное время. Поэтому с помощью применения данных форм мы сможем решать очень быстро целый класс задач, например, задачи на графах, которые, как известно, имеют большое практическое применение. == КНФ в форме Крома ==
{{Определение
|definition=
'''Конъюнктивная нормальная форма'''(КНФангл. ''conjunctive normal form, CNF'') '''в форме Крома, 2-КНФ<ref>[https://en.wikipedia.org/wiki/2-satisfiability Wikipedia {{---}} 2-satisfiability]</ref>''' (англ. ''2-CNF'' ) {{--- это }} конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию нескольких ровно двух литералов, количество которых не превышает двух.}}
'''Пример :'''
<tex>(x_1\vee\overline x_2) \wedge (\overline x_1 \vee x_3 ) \wedge (\overline x_3 \vee x_2 ) \wedge (\overline x_1 \vee \overline x_2) \wedge... \ldots </tex> '''Утверждения:'''
*{{Утверждение|statement= Существует алгоритм, который за полиномиальное время проверяет, что функциюформулу, заданную в форме Крома , можно удовлетворить(т.е КНФ в форме Крома не является тождественным <tex>0</tex>).}}{{main|2SAT}}
*{{Утверждение|statement=Функцию <tex>F</tex> можно задать в форме Крома <tex> \Leftrightarrow iff </tex> когда выполнено следующее следствие : <tex> F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=F(z_1, \ldots, z_n)=1 \Rightarrow</tex> <tex>F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, \ldots, \langle x_n, y_n, z_n \rangle)</tex>}}
<tex>F(x_1, ..., x_n)=F(y_1, ..., y_n)=F(z_1, ..., z_n)КНФ в форме Хорна ==1\Rightarrow F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, ..., \langle x_n, y_n, z_n \rangle) </tex>
= КНФ в форме Хорна =
{{Определение
|definition=
'''Конъюнктивная нормальная форма'''(КНФангл. ''conjunctive normal form, CNF'') '''в форме Хорна<ref>[https://en.wikipedia.org/wiki/Horn_clause Wikipedia {{---}} Horn clause]</ref>''' (англ. ''Horn clause' ') {{--- }} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания.}}
'''Пример:'''
<tex> (\overline x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n ) \wedge (x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n)\wedge \ldots</tex> Каждая скобка представляет собой Дизъюнкт Хорна<ref>[https://ru.wikipedia..org/wiki/%D0%94%D0%B8%D0%B7%D1%8A%D1%8E%D0%BD%D0%BA%D1%82_%D0%A5%D0%BE%D1%80%D0%BD%D0%B0 Википедия {{---}} Дизъюнкт Хорна]</texref>.
{{Утверждение
|statement= Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна, можно удовлетворить.
|proof= Далее будет приведено доказательство, предлагающее алгоритм решения.
Каждая *'''Шаг 1. Одиночное вхождение переменных.''' Найдем в данной формуле одиночно стоящие переменные. Например, для формулы <tex> x \wedge (x \vee \neg y \vee \neg z) </tex> такой переменной является <tex>x</tex>. *# Присутствуют одиночно стоящие переменные.*#:Присвоим всем таким переменным значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex> иначе, так как в конъюнкции они должны дать <tex>1</tex>. Заметим, что если какая-либо скобка представляет собой [httpпосле этого обратилась в <tex> 0 </tex>, то решения не существует. *# Отсутствуют одиночно стоящие переменные. *#:Всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> мы получим <tex> 1</rutex> в результате дизъюнкции.wikipedia.orgВ итоге мы получим выражение вида: <tex>1\wedge 1 \wedge \ldots \wedge 1</wikitex>, что в результате даст нам <tex> 1</Дизъюнкт_Хорна''Дизъюнкт Хорна'']tex>. В таком случае дальнейшие шаги выполнять не нужно.
Любую формулу можно представить в виде КНФ в форме Хорна*'''Шаг 2. Для этого формулу необходимо преобразовать в конъюнкцию элементарных дизъюнкций ''' *:Опустим одиночно стоящие переменные и далее каждую дизъюнкцию представить скобки, в форме дизьюнкта которых значение стало равным <tex>1</tex>. Перейдём к <tex>1</tex> шагу алгоритма. По определению формы Хорна, в каждой из скобок, где мы опустили переменную, не больше <tex>1</tex> переменной без отрицания. Либо какая-то из переменных внутри скобки будет иметь отрицание, т.е. при подстановке <tex>0</tex> станет равна <tex>1</tex>, либо мы рассмотрим переменную без отрицания как отдельно стоящую переменную. Значит <tex>1</tex> шаг алгоритма выполнится верно. Будем проделывать алгоритм, начиная сначала, пока <tex>1</tex> шаг не найдёт ответ.
'''УтвержденияОбозначим за <tex>N</tex> число вхождений переменных в формулу.Итерация состоит из шагов, каждый из которых выполняется за <tex>O(N)</tex>. Всего итераций будет не больше <tex>N</tex>, так как если первый шаг не завершил алгоритм, то уменьшил размер формулы на одно вхождение. Итого, асимптотика алгоритма составляет <tex>O(N^2)</tex>.}}{{Утверждение|statement=Функцию <tex>F</tex> можно задать в форме Хорна <tex> \iff </tex> выполнено следующее следствие:'''<tex> F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=1 \Rightarrow F(x_1 \wedge y_1, x_2 \wedge y_2, \ldots, x_n \wedge y_n)</tex>}}
== См.также ==* [[СКНФ]]* [[2SAT]]*Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна можно удовлетворить.[[ДНФ]]
==Примечания==
*Функцию <tex>F</tex> можно задать в форме Хорна <tex> \Leftrightarrow <references /tex> когда выполнено следующее следствие :
<tex> F(x_1, ..., x_n)=F(y_1, ..., y_n)=1 \Rightarrow F(x_1 \wedge y_1, x_2 \wedge y_2, Источники информации==*[https://en.wikipedia.., x_n \wedge y_n)<org/wiki/tex>Conjunctive_normal_form Wikipedia {{---}} CNF]
==См.также== * [[СКНФКатегория: Дискретная математика и алгоритмы]]* [[httpКатегория://en.wikipedia.org/wiki/2-satisfiability 2-SAT(КНФ в форме Крома)Булевы функции ]]
1632
правки

Навигация