Изменения

Перейти к: навигация, поиск

Специальные формы КНФ

1340 байт убрано, 19:39, 4 сентября 2022
м
rollbackEdits.php mass rollback
__TOC__ Рассмотрим две формы, с помощью которых можно представить формулы, заданные в [[Определение булевой функции#Представление булевых функций|конъюнктивной нормальной форме]], то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Эти две формы интересны тем, что для них Для двух этих форм существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение <tex>1</tex>, в то время, как для обычной функции, не представленной данной формой, эта задача является [[Примеры NP-полных языков. Теорема Кука|<tex>\mathrm{NP}</tex>-полной]]. Этот факт интересен потому, что, имея большое количество функций, которые можно свести к форме Хорна или Крома, мы сможем гарантированно вычислять необходимое нам условие за полиномиальное время. Поэтому с помощью применения данных форм мы сможем решать очень быстро целый класс задач, например, задачи на графах, которые, как известно, имеют большое практическое применение.
== КНФ в форме Крома ==
{{Определение
|definition=
'''Конъюнктивная нормальная форма '''(КНФангл. ''conjunctive normal form, CNF'') '''в форме Крома (, 2-КНФ)<ref>[https://en.wikipedia.org/wiki/2-satisfiability Wikipedia {{---}} 2-satisfiability]</ref>''' (англ. ''2-CNF'') {{---}} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию нескольких ровно двух литералов, количество которых не превышает двух.}}
'''Пример :'''
<tex>(x_1\vee\overline x_2) \wedge (\overline x_1 \vee x_3 ) \wedge (\overline x_3 \vee x_2 ) \wedge (\overline x_1 \vee \overline x_2) \wedge... \ldots </tex>
{{Утверждение
|statement=Существует алгоритм, который за полиномиальное время проверяет, что функциюформулу, заданную в форме Крома , можно удовлетворить (т.е КНФ в форме Крома не является тождественно равной <tex>0</tex>).}}{{main|proof=Данный алгоритм подробно описан в статье о выполнимости булевых формул, заданных в форме Крома: [[2SAT]].}} 
{{Утверждение
|statement=Функцию <tex>F</tex> можно задать в форме Крома <tex> \iff </tex> выполнено следующее следствие:<tex> F(x_1, ...\ldots, x_n)=F(y_1, ...\ldots, y_n)=F(z_1, ...\ldots, z_n)=1 \Rightarrow</tex> <tex>F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, ...\ldots, \langle x_n, y_n, z_n \rangle)</tex>
}}
== КНФ в форме Хорна ==
{{Определение
|definition=
'''Конъюнктивная нормальная форма '''(КНФангл. ''conjunctive normal form, CNF'')'''в форме Хорна<ref>[https://en.wikipedia.org/wiki/Horn_clause Wikipedia {{---}} Horn clause]</ref>''' (англ. ''Horn clause'') {{---}} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания.}}
'''Пример:'''
<tex> (\overline x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n ) \wedge (x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n)\wedge ...\ldots</tex>
Каждая скобка представляет собой Дизъюнкт Хорна<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B7%D1%8A%D1%8E%D0%BD%D0%BA%D1%82_%D0%A5%D0%BE%D1%80%D0%BD%D0%B0 Википедия {{---}} Дизъюнкт Хорна]</ref>. Любую формулу можно представить в виде КНФ в форме Хорна. Для этого формулу необходимо преобразовать в конъюнкцию элементарных дизъюнкций и далее каждую дизъюнкцию представить в форме дизьюнкта Хорна.
{{Утверждение
|statement= Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна , можно удовлетворить.
|proof= Далее будет приведено доказательство, предлагающее алгоритм решения.
*'''Шаг 1. Одиночное вхождение переменных'''
*Найдем в данной формуле одиночно стоящие переменные. Например, для формулы <tex> x \wedge (x \vee \neg y \vee \neg z) </tex> такой переменной является <tex>x</tex>. Присвоим всем таким переменным значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex> иначе, так как в конъюнкции они должны дать <tex>1</tex>. Заметим, что если какая-либо скобка после этого обратилась в <tex> 0 </tex>, то решения не существует.
* Если одиночно стоящих переменных в данном выражении нет, то всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> мы получим <tex> 1</tex> в результате дизъюнкции. Сделав так для каждой скобки, мы получим выражение вида: <tex>1\wedge 1 \wedge ... \wedge 1</tex>, что в конечном итоге даст нам <tex> 1</tex> В таком случае дальнейшие шаги выполнять не нужно.
*'''Шаг 2.''' Идем по скобкам и выписываем все встречающиеся нам переменные, кроме тех, с которыми мы работали на предыдущем шаге. Если переменная всегда входит без отрицаний, присваиваем ей значение <tex>1</tex>, если переменная всегда входит с отрицаниями, присваиваем <tex>0</tex>. На данном шаге никакая скобка не может обратиться в <tex>0</tex>.
*'''Шаг 3.''' На данном шаге остались переменные, не являющиеся одиночно стоящими и входящие как с отрицаниями, так и без них. Рассмотрим скобки, в которых значение всех рассмотренных ранее переменных или их отрицаний уже равны <tex> 0 </tex> (это возможно только в случае, когда в скобке присутствуют одиночно стоящие переменные из первого шага, или их отрицания). Рассматриваемые на данном шаге переменные в такой скобке могут входить с отрицанием и без него. Если рассматриваемая переменная входит без отрицания, то присвоим ей значение <tex> 1</tex>, иначе, присвоим ей <tex> 0 </tex>. Если после этого какая-либо скобка обратилось в <tex> 0 </tex>, то решения нет, иначе формула разрешима.
*Время работы алгоритма'''Шаг 1. Одиночное вхождение переменных.''' Найдем в данной формуле одиночно стоящие переменные. Например, для формулы <tex> x \wedge (x \vee \neg y \vee \neg z) </tex> такой переменной является <tex>x</tex>. *# Присутствуют одиночно стоящие переменные.*#:Будем считатьПрисвоим всем таким переменным значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex> иначе, так как в конъюнкции они должны дать <tex>1</tex>. Заметим, что длина формулы если какая- количество символов, входящих либо скобка после этого обратилась в данную формулу. Обозначим ее за <tex> n 0 </tex>, то решения не существует.*'''Шаг 1.''' На данном шаге мы делаем один проход по формуле, ища # Отсутствуют одиночно стоящие переменные. Следовательно*#:Всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, время работы первого шага что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> (O(n)) мы получим <tex> 1</tex> в результате дизъюнкции. В итоге мы получим выражение вида: <tex>1\wedge 1 \wedge \ldots \wedge 1</tex>, что в результате даст нам <tex> 1</tex>.В таком случае дальнейшие шаги выполнять не нужно. *'''Шаг 2.''' На данном шаге *:Опустим одиночно стоящие переменные и скобки, в которых значение стало равным <tex>1</tex>. Перейдём к <tex>1</tex> шагу алгоритма. По определению формы Хорна, в каждой из скобок, где мы за линейное время мы проходим по формуле и помечаем все переменныеопустили переменную, не больше <tex>1</tex> переменной без отрицания. Либо какая-то из переменных внутри скобки будет иметь отрицание, т.е. при подстановке <tex>0</tex> станет равна <tex>1</tex>, которые входят либо только мы рассмотрим переменную без отрицаний либо только с отрицаниями и после этого присваиваем им нужные значенияотрицания как отдельно стоящую переменную. Значит <tex>1</tex> шаг алгоритма выполнится верно. Время работы данного шага Будем проделывать алгоритм, начиная сначала, пока <tex> (O(n)) 1</tex>шаг не найдёт ответ.*'''Шаг 3Обозначим за <tex>N</tex> число вхождений переменных в формулу.''' На данном шаге мы также делаем один проход по формуле и присваиваем нужные значения оставшимся переменным. Время работы данного шага также Итерация состоит из шагов, каждый из которых выполняется за <tex> (O(n)N) </tex>.*Всего итераций будет не больше <tex>N</tex>, так как если первый шаг не завершил алгоритм, то уменьшил размер формулы на одно вхождение. Итого, время работы данного асимптотика алгоритма линейноесоставляет <tex>O(N^2)</tex>.
}}
{{Утверждение
|statement=Функцию <tex>F</tex> можно задать в форме Хорна <tex> \iff </tex> выполнено следующее следствие:<tex> F(x_1, ...\ldots, x_n)=F(y_1, ...\ldots, y_n)=1 \Rightarrow F(x_1 \wedge y_1, x_2 \wedge y_2, ...\ldots, x_n \wedge y_n)</tex>
}}
* [[СКНФ]]
* [[2SAT]]
* [[ДНФ]]
==Примечания==
==Источники информации==
*[https://en.wikipedia.org/wiki/Horn_clause| Conjunctive_normal_form Wikipedia {{---}} Horn clauseCNF]*[https://en.wikipedia.org/wiki/2-satisfiability| Wikipedia {{---}} 2-satisfiability]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Булевы функции ]]
1632
правки

Навигация