Редактирование: Список заданий по АСД

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 130: Строка 130:
 
# Пусть $G$ - регулярный граф степени $k$, $U \subset V$, $U$ содержит нечетное число вершин и $m$ - число ребер, которые соединяют вершины $U$ с вершинами $V \setminus U$. Тогда $m$ четно тогда и только тогда, когда $k$ четно.
 
# Пусть $G$ - регулярный граф степени $k$, $U \subset V$, $U$ содержит нечетное число вершин и $m$ - число ребер, которые соединяют вершины $U$ с вершинами $V \setminus U$. Тогда $m$ четно тогда и только тогда, когда $k$ четно.
 
# Докажите, что в двусвязном кубическом графе есть полное паросочетание.
 
# Докажите, что в двусвязном кубическом графе есть полное паросочетание.
# Докажите, что если в кубическом графе не более двух мостов, то в нем есть полное паросочетание.
+
# Докажите, что если в двусвязном кубическом графе не более двух мостов, то в нем есть полное паросочетание.
 
# Приведите пример кубического графа, в котором нет полного паросочетания.
 
# Приведите пример кубического графа, в котором нет полного паросочетания.
 
# Предложите алгоритм разбиения регулярного двудольного графа степени $k$ на $k$ совершенных паросочетаний за время $O(VE)$.
 
# Предложите алгоритм разбиения регулярного двудольного графа степени $k$ на $k$ совершенных паросочетаний за время $O(VE)$.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)