Изменения

Перейти к: навигация, поиск

Список заданий по АСД

10 636 байт добавлено, 00:15, 15 декабря 2014
Нет описания правки
# Можно ввести понятие пропускной способности вершины $c(u)$ как максимальной разрешенной суммы $\sum_{uv, f(uv) > 0}f(uv)$. Решите задачу о максимальном потоке для графа с пропускными способностями вершин.
# Пусть $f_{max}$ - максимальный поток в сети, а $f_{blocking}$ - блокирующий поток. Доказать, что $|f_{blocking}| / |f_{max}|$ может быть сколь угодно мало.
# Глобальным разрезом называется разбиение множества вершин графа на два непустых непересекающихся множества. Сведите задачу о глобальном разрезе к поиску $O(V)$ максимальных потоков.
# Предложите алгоритм проверки, что в графе единственный минимальный разрез
# Петя в алгоритме Форда-Фалкерсона для поиска паросочетания в двудольном графе сделал ошибку: оставил рёбра между долями графа неориентированными. Построить пример, на котором алгоритм будет работать неправильно.
# Доказать теорему Холла: что в двудольном графе $G$ существует полное паросочетание тогда и только тогда, когда для любого множества вершин левой доли $A \subset X$ выполнено $|N(A)| \ge |A|$. ($N(A)$ - множество соседей вершин из $A$)
# Докажите, что в регулярном двудольном графе существует полное паросочетание.
# Дефектом множества вершин левой доли в графе называется $def(A) = |N(A)| - |A|$. Найти в двудольном графе множество с минимальным дефектом.
# Дан ациклический ориентированный граф. Нужно покрыть его минимальным числом вершинно-непересекающихся путей. Сведите эту задачу к задаче о максимальном паросочетании.
# Дан ациклический ориентированный граф. Нужно покрыть его минимальным числом реберно-непересекающихся путей.
# Докажите, что если в графе единственное полное паросочетание, то в нем есть мост
# Предложите алгоритм проверки, что в двудольном графе четное число полных паросочетаний
# Предложите алгоритм проверки по двудольному графу и заданному полному паросочетанию, является ли оно единственным в этом графе (за $O(E)$).
# Предложите алгоритм для решения следующей задачи за $O(E)$. Дан двудольный граф и полное паросочетание в нем. Требуется выяснить для каждого ребра, лежит ли оно на некотором полном паросочетании.
# Задача об устойчивом паросочетании. Задан двудольный граф с равным числом вершин в долях. Для каждой вершины каждой доли известен порядок предпочтения вершин другой доли (каждая вершина знает, какая вершина другой доли ей нравится больше всего, какая вершина на втором месте, и так далее). Паросочетание называется устойчивым, если никакие две вершины не могут обменяться парами, чтобы для каждой из них новый партнер стал более предпочтительным. Требуется построить устойчивое полное паросочетание за $O(VE)$.
# Пусть $G$ - регулярный двудольный граф степени $k$. Докажите, что ребра $G$ можно разбить на $k$ полных паросочетаний.
# Пусть $G$ - регулярный граф степени $k$, $U \subset V$, $U$ содержит нечетное число вершин и $m$ - число ребер, которые соединяют вершины $U$ с вершинами $V \setminus U$. Тогда $m$ четно тогда и только тогда, когда $k$ четно.
# Докажите, что в двусвязном кубическом графе есть полное паросочетание.
# Докажите, что если в кубическом графе не более двух мостов, то в нем есть полное паросочетание.
# Приведите пример кубического графа, в котором нет полного паросочетания.
# Предложите алгоритм разбиения регулярного двудольного графа степени $k$ на $k$ совершенных паросочетаний за время $O(VE)$.
# Докажите, что ребра двудольного графа можно раскрасить в $k$ цветов, где $k$ - максимальная степень вершины, причем никакие два ребра, инцидентные одной вершине, не будут иметь одинаковый цвет.
# Пусть максимальное паросочетание в графе $G$ имеет размер $k$. Каким может быть размер максимального по включению паросочетания в $G$?
# Докажите, что любое дерево имеет не более одного полного паросочетания. Верно ли это для максимальных, но не полных паросочетаний?
# Докажите, что если в графе четное число вершин и любая вершина имеет степень хотя бы $n / 2$, то в таком графе есть полное паросочетание. Можно ли усилить это утверждение?
# Рассмотрим в двудольном графе с долями $X$ и $Y$ множества $S\subset X$ и $T \subset Y$. Пусть существуют паросочетания $M_S$ и $M_T$, которые покрывают $S$ и $T$, соответственно. Докажите, что существует паросочетание, которое покрывает $S\cup T$.
# Докажите, что граф с $2n$ вершинами и степенью любой вершины не больше $k$ имеет не более $k^n$ различных полных паросочетаний.
# Дайте оценку, аналогичную оценке из предыдущего задания, для двудольного графа с долями, содержащими по $n$ вершин.
# Завершите доказательство теоремы о сжатии соцветий.
# Будем называть множество ребер набором 1-2-путей, если любая компонента связности в этом множестве является содержит не более двух ребер. Предложите алгоритм построения набора 1-2-путей в двудольном графе, покрывающего все вершины.
# В регулярном графе $G$ степень любой вершины $k$ и $\lambda(G) \ge k - 1$. Докажите, что в $G$ есть полное паросочетание.
# Докажите, что ребра кубического графа можно раскрасить в разные цвета так, что для каждого цвета существует ровно три ребра этого цвета, причем они представляют собой простой путь.
# Докажите, что в алгоритме масштабирования стоимостей для поиска потока минимальной стоимости на каждой фазе число операций relabel с каждой вершиной не превышает $3V$.
# Пусть $f$ - поток, а $f'$ - псевдопоток (выполнены все аксиомы, кроме сохранения потока). Пусть в вершине $u$ есть положительный избыток $f'$. Докажите, что в $G_f$ есть путь из $u$ до некоторой вершины, в которой есть положительный недостаток $f'$ по ненасыщенным ребрам.
# Докажите, что в алгоритме масштабирования стоимостей для поиска потока минимальной стоимости на каждой фазе число насыщающих операций push есть $O(VE)$.
# Докажите, что в алгоритме масштабирования стоимостей для поиска потока минимальной стоимости на каждой фазе число ненасыщающих операций push есть $O(V^2E)$.
# Докажите, что в алгоритме масштабирования стоимостей для поиска потока минимальной стоимости на каждой фазе число ненасыщающих операций push есть $O(V^2E)$.
# Пусть $f^*$ - поток минимальной стоимости. Пусть поток $f$ является $\varepsilon$-оптимальным, причем $\varepsilon(f)=\varepsilon$. Пусть $\varepsilon' < \varepsilon/V$. Докажите, что если $f'$ является $\varepsilon'$-оптимальным потоком, то существует ребро, поток $f'$ по которому совпадает с потоком $f^*$, а поток $f$ - нет.
# Докажите, что если $\varepsilon(f) = \varepsilon$ и $f'$ получен из $f$ дополнением по циклу минимальной средней стоимости, то $\varepsilon(f')\le (1-1/V)\varepsilon$.
</wikitex>
Анонимный участник

Навигация