Редактирование: Список заданий по АСД 2к 2015 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 138: Строка 138:
 
# Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути.
 
# Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути.
 
# Доказать теорему о декомпозиционном барьере. (см. вики-конспекты)
 
# Доказать теорему о декомпозиционном барьере. (см. вики-конспекты)
 +
# Пусть есть $k$ истоков и $m$ стоков. Свести задачу к задаче о максимальном потоке.
 +
# Пусть у вершин тоже будет пропускная способность. Свести задачу к задаче о максимальном потоке.
 
# Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$.
 
# Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$.
 
# $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало.
 
# $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)