Редактирование: Список заданий по АСД 2к 2015 осень
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 136: | Строка 136: | ||
# Глобальным разрезом называется разбиение множества вершин графа на два непустых непересекающихся множества. Сведите задачу о глобальном разрезе к поиску $O(V)$ максимальных потоков. | # Глобальным разрезом называется разбиение множества вершин графа на два непустых непересекающихся множества. Сведите задачу о глобальном разрезе к поиску $O(V)$ максимальных потоков. | ||
# Постройте граф, в котором алгоритм Форда-Фалкерсона (ФФ) находит $\Omega(C_{max})$ путей. Веса всех рёбер целочисленные. | # Постройте граф, в котором алгоритм Форда-Фалкерсона (ФФ) находит $\Omega(C_{max})$ путей. Веса всех рёбер целочисленные. | ||
+ | # Постройте граф, в котором не будет найден максимальный поток. Веса рёбер вещественные. | ||
+ | # Если выбирать путь с максимальным $C_{min}$, то время работы ФФ будет $O(polynom(V, E) \log(C_{max}))$. Докажите это. | ||
# Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути. | # Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути. | ||
# Доказать теорему о декомпозиционном барьере. (см. вики-конспекты) | # Доказать теорему о декомпозиционном барьере. (см. вики-конспекты) | ||
+ | # Пусть есть $k$ истоков и $m$ стоков. Свести задачу к задаче о максимальном потоке. | ||
+ | # Пусть у вершин тоже будет пропускная способность. Свести задачу к задаче о максимальном потоке. | ||
# Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$. | # Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$. | ||
# $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало. | # $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало. |