Редактирование: Список заданий по АиСД-year2015-сем2
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 63: | Строка 63: | ||
# Задан несильносвязный турнир. Турнир {{---}} ориентированный граф, в котором между любыми двумя вершинами есть ровно одно ребро, либо в одну сторону, либо в другую. Найдите число способов развернуть одно ребро так, чтобы все вершины стали сильносвязными за $O(V^2)$. | # Задан несильносвязный турнир. Турнир {{---}} ориентированный граф, в котором между любыми двумя вершинами есть ровно одно ребро, либо в одну сторону, либо в другую. Найдите число способов развернуть одно ребро так, чтобы все вершины стали сильносвязными за $O(V^2)$. | ||
# Приведите пример графа с отрицательными рёбрами, но без отрицательных циклов, на котором алгоритм Дейкстры работает неверно. | # Приведите пример графа с отрицательными рёбрами, но без отрицательных циклов, на котором алгоритм Дейкстры работает неверно. | ||
− | # Есть взвешенный граф, где веса ребер, исходящих из одной вершины, одинаковы. Докажите, | + | # Есть взвешенный граф, где веса ребер, исходящих из одной вершины, одинаковы. Докажите, что алгоритм Дейкстры, реализованный с помощью двоичной кучи, будет работать за $O(V\log{V} + E)$ |
# Модифицируем алгоритм Дейкстры следующим образом: будем вместо приоритетной очереди использовать FIFO-очередь. Если при релаксации до вершины, которая уже была в очереди, расстояние улучшается, добавим ее снова в очередь. Докажите, что полученный алгоритм ищет кратчайшие пути в графе за $O(VE)$. | # Модифицируем алгоритм Дейкстры следующим образом: будем вместо приоритетной очереди использовать FIFO-очередь. Если при релаксации до вершины, которая уже была в очереди, расстояние улучшается, добавим ее снова в очередь. Докажите, что полученный алгоритм ищет кратчайшие пути в графе за $O(VE)$. | ||
# Укажите способ построить для некоторых $c_1, c_2 >0$ и любых V, E, где $c_1 V \le E \le c_2 V^2$ граф, на котором алгоритм из предыдущего задания работает за $\Omega(VE)$. | # Укажите способ построить для некоторых $c_1, c_2 >0$ и любых V, E, где $c_1 V \le E \le c_2 V^2$ граф, на котором алгоритм из предыдущего задания работает за $\Omega(VE)$. | ||
Строка 74: | Строка 74: | ||
# Предложите алгоритм поиска всех ребер, которые лежат во всех MST за $O(E \log{V})$. | # Предложите алгоритм поиска всех ребер, которые лежат во всех MST за $O(E \log{V})$. | ||
# Модифицируем алгоритм Дейкстры следующим образом: будем вместо приоритетной очереди использовать FIFO-очередь. Если при релаксации до вершины, которая уже была в очереди, расстояние улучшается, добавим ее снова в очередь. Докажите, что полученный алгоритм ищет кратчайшие пути в графе с отрицательными ребрами, но без отрицательных циклов, за $O(VE)$. | # Модифицируем алгоритм Дейкстры следующим образом: будем вместо приоритетной очереди использовать FIFO-очередь. Если при релаксации до вершины, которая уже была в очереди, расстояние улучшается, добавим ее снова в очередь. Докажите, что полученный алгоритм ищет кратчайшие пути в графе с отрицательными ребрами, но без отрицательных циклов, за $O(VE)$. | ||
− | |||
− | |||
− | |||
− | |||
</wikitex> | </wikitex> |