Изменения

Перейти к: навигация, поиск

Список заданий по ДМ-сем2

21 062 байта добавлено, 19:03, 4 сентября 2022
м
rollbackEdits.php mass rollback
# Использования памяти без инициализации. Задан массив $a[1..n]$. Требуется поддержать две операции: $set(i, x)$ и $get(i)$. Операция $set$ должна присваивать $i$-му элементу массива значение $x$. Операция $get$ должна возвращать последнее присвоенное $i$-му элементу значение, либо 0, если присвоения не было. При этом исходно массив заполнен произвольными данными. Разрешается завести $O(1)$ дополнительных массивов (также заполненных произвольным мусором) и реализовать все операции за истинное $O(1)$.
# Счетчик Кнута. Рассмотрим массив $a[0..n-1]$. Будем считать, что в каждом элементе может быть число 0, 1 или 2 и массив представляет собой число $a[0]+a[1]\cdot 2+a[2]\cdot 4 + \ldots + a[n-1]\cdot2^{n-1}$. Требуется реализовать операцию добавления $2^k$ к числу, представленному в массиве за истинное $O(1)$ и $O(n)$ дополнительной памяти.
# Реализуйте менеджер памяти, позволяющий выделять и возвращать блоки одинакого одинакового размера за $O(1)$ времени и $O(1)$ дополнительной памяти
# Предложите реализацию стека, которая дополнительно позволяет выполнить операцию "вернуть минимум значений в стеке"
# Стек с множественным извлечением. Добавим в стек операцию multipop(k), которая снимает вершины стека k элементов. Докажите, что амортизированная стоимость операции multipop равна $O(1)$. Сформулируйте окончательное доказательство с использованием метода потенциалов.
# Докажите, что операция decreaseKey в тонкой куче из предыдущего задания выполняется за истиные $O(\log n)$
# Ускорение extractMin. Докажите, что в тонкой куче можно добиться истинного $O(\log n)$ на extractMin, если обрабатывать корневой список, сливая деревья разных рангов, как при extractMin каждый раз, когда в корневом списке становится хотя бы $2\log n$ элементов.
# Предложите алгоритм удаления из АВЛ-дерева.
# Предложите алгоритм добавления в красно-черное дерево
# Предложите алгоритм удаления из красно-черного дерева
# Статически оптимальное дерево поиска: пусть заданы ключи и известно для каждого ключа, сколько раз его потребуется искать: $p[i]$. Требуется построить дерево поиска, чтобы суммарное время доступа ко всем ключам было минимально.
# Предложите алгоритм слияния двух АВЛ-деревьев, при том, что в первом дереве все ключи меньше, чем во втором за $O(\log n)$
# Предложите алгоритм разделения АВЛ-дерева на два, где в первом дереве все ключи меньше или равны заданному $x$, а во втором - больше, за $O(\log n)$
# В АВЛ-дереве находятся вершины с ключами от 1 до $n$. Какие ключи могут быть в корне?
# В красно-черном дереве находятся вершины с ключами от 1 до $n$. Какие ключи могут быть в корне?
# Предложите реализацию АВЛ-дерева, в которой в каждом узле хранится $O(1)$ бит
# Перекошенное сбалансированное дерево. Дерево называется перекошенным сбалансированным, если у каждой вершины разность высоты левого и правого поддерева 0, 1 или 2. Предолжите реализацию операций вставки и удаления для перекошенного сбалансированного дерева.
# Мальчик Петя считает, что если в дереве поиска можно хранить несколько одинаковых ключей, то на пути от одного такого ключа до другого не может быть ключей с другим значением. Тогда можно легко найти все такие ключи. Прав ли он?
# Пусть заданы наборы ключей $(x_1, x_2, ..., x_n)$ и $(y_1, y_2, ..., y_n)$, где все $x$-ы и все $y$-и различны. Докажите, что существует единственное декартово дерево с набором ключей в вершинах $(x_i, y_i)$
# В условиях предыдущей задачи пусть $x_1 < x_2 < .. < x_n$, покажите как построить декартово дерево за $O(n)$
# Петя предлагает сделать гибрид декартового дерева и сплей-дерева: при доступе к ключу в декартовом дереве удалять его и добавлять заново с приоритетом меньше текущего минимального. Что у него получилось?
# Проведите анализ случай zig для сплей-дерева по аналогии с случаем zig-zag, рассмотренном на лекции
# Проведите анализ случай zig-zig для сплей-дерева по аналогии с случаем zig-zag, рассмотренном на лекции
# Статическая оптимальность сплей-дерева. Докажите, что если к ключам $1, ..., n$, сложенным в сплей-дерево выполняется m запросов, к $i$-му ключу осуществляется $k_i$ запросов, где $k_i > 0$, то суммарное время работы не превышает $O(m H(p_1, p_2, .., p_n))$, где $p_i = k_i / m$, $H$ - шенноновская энтропия
# Постройте пример сплей-дерева, содержащего не менее 6 вершин, которое после выполнения операции splay для одного из самых глубоких листьев становится бамбуком
# Постройте пример сплей-дерева, содержащего не менее 7 вершин, которое после выполнения операции splay для одного из самых глубоких листьев становится бамбуком
# Теорема о близких запросах в сплей-дереве. Пусть в сплей-дерево сложены ключи $1, ..., n$, зафиксируем один из ключей $f$, пусть выполняется $m$ запросов к ключам. Докажите, что суммарное время на запросы есть $O(n \log n + m + \sum(\log(|q_i - f| + 1)))$, где $q_i$ - $i$-й запрос
# Предложите реализацию insert в декартовом дереве.
# Предложите реализацию insert в декартовом дереве, использующую не более одного вызова split/merge.
# Предложите реализацию remove в декартовом дереве.
# Предложите реализацию remove в декартовом дереве, использующую не более одного вызова split/merge.
# Докажите оценку $O(\log n)$ для реализации СНМ со сжатием путей, но когда второе дерево всегда подвешивается на первое (а не обязательно меньшее на большее)
# Докажите оценку $O(\log^* n)$ для СНМ, если вместо рангов используется число вершин в поддереве (меньшее дерево подвешивается на большее)
# Решите задачу: найти во взвешеном дереве минимальный по весу путь, состоящий ровно из $k$ ребер
# Пусть в реализации СНМ с помощью леса корневых деревьев мы при объединении двух деревьев делаем корнем случайную из двух вершин. Приведите пример, где высота дерева в результате серии объединений будет $\Omega(n)$.
# Пусть в реализации СНМ с помощью леса корневых деревьев мы при объединении двух деревьев делаем корнем случайную из двух вершин. Сжатие путей не проводится. Докажите или опровергните, что в среднем время работы get будет $O(\log n)$.
# Докажите, что если при реализации СНМ с помощью леса корневых деревьев подвешивать одно дерево на другое произвольным образом, но не проводить сжатие путей, то среднее время работы get будет $O(\log n)$.
# Докажите, что если при реализации СНМ с помощью леса корневых деревьев подвешивать одно дерево на другое случайным образом и проводить сжатие путей, то среднее время работы get будет $O(\log^* n)$.
# Для каких $a$ определен $\log^*_a x$?
# Докажите, что если для $a$ и $b$ определен $\log^*_a x$ и $\log^*_b x$, то $\log^*_a x = O(\log^*_b x)$.
# Предложите решение задачи с помощью дерева отрезков (ДО). Задан массив $a[1..n]$. Поступают запросы: прибавить ко всем элементам с $L$ по $R$ заданное число, получить $i$-й элемент. Указание: не используйте групповые операции с модификаторами поддеревьев.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: прибавить ко всем элементам с $L$ по $R$ заданное число, получить сумму отрезке.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: прибавить ко всем элементам с $L$ по $R$ заданное число, получить произведение на отрезке.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: изменить элемент, найти элемент с минимальным индексом, больший или равный заданного значения.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: изменить элемент, найти на заданном отрезке элемент с минимальным индексом, больший или равный заданного значения.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: прибавить значение к элементам на отрезке, найти элемент с минимальным индексом, больший или равный заданного значения.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: найти $k$-й по величине элемент на отрезке с $i$-го по $j$-й. Время на запрос $O(\log^3 n)$. Заявляйте эту задачу только, если не умеете решать быстрее.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: найти $k$-й по величине элемент на отрезке с $i$-го по $j$-й. Время на запрос $O(\log^2 n)$. Заявляйте эту задачу только, если не умеете решать быстрее.
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: найти $k$-й по величине элемент на отрезке с $i$-го по $j$-й. Время на запрос $O(\log n)$.
# Предложите решение задачи с помощью ДО и деревьев поиска. Задан массив $a[1..n]$. Поступают запросы: найти $k$-й по величине элемент на отрезке с $i$-го по $j$-й, изменить элемент
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: прибавить к всем элементам с $L$ по $R$ значение, к $i$-му значению прибавляется $ki+b$, где $k$ и $b$ - параметры запроса, получить сумму на отрезке
# Предложите решение задачи с помощью ДО. Задан массив $a[1..n]$. Поступают запросы: прибавить к всем элементам с $L$ по $R$ значение, к $i$-му значению прибавляется $ki+b$, где $k$ и $b$ - параметры запроса, получить минимум на отрезке
# В дереве отрезков любой отрезок можно разбить на $O(\log n)$ непересекающихся отрезков дерева. Предложите способ выделить $O(n \log n)$ отрезков в массиве индексов 1..$n$, чтобы любой отрезок можно было разбить на $O(1)$ (возможно пересекающихся) отрезков из выбранного множества
# На базе предыдущего задания решите задачу о минимуме на отрезке без изменения элементов за $O(1)$ на запрос и $O(n \log n)$ предподготовки.
# В дереве отрезков любой отрезок можно разбить на $O(\log n)$ непересекающихся отрезков дерева. Предложите способ выделить $O(n \log n)$ отрезков в массиве индексов 1..$n$, чтобы любой отрезок можно было разбить на $O(1)$ непересекающихся отрезков из выбранного множества
# Дано $n$ прямоугольников на плоскости со сторонами, параллельными осям координат. Требуется найти точку, покрытую максимальным числом прямоугольников за $O(n \log n)$.
# Дано $n$ прямоугольников на плоскости со сторонами, параллельными осям координат. Требуется найти площадь объединения прямоугольников за $O(n \log n)$.
# Дано $n$ прямоугольников на плоскости со сторонами, параллельными осям координат. Требуется найти периметр объединения прямоугольников за $O(n \log n)$.
# Дано $n$ точек на плоскости. Требуется найти наибольшую последовательность точек, в которой при переходе к следующей точке обе координаты строго возрастают, за $O(n \log n)$.
# Дано $n$ прямоугольников на плоскости со сторонами, параллельными осям координат, и $m$ точек. Требуется найти точку среди заданных, покрытую максимальным числом прямоугольников, за $O((n+m) \log (n+m))$.
# Дано $n$ прямоугольников на плоскости со сторонами, параллельными осям координат, и $m$ точек. Требуется найти прямоугольник среди заданных, содержащий максимальное число заданных точек, за $O((n+m) \log (n+m))$.
# Какой размер множества одинаковых равномерно распределенных от 1 до $n$ независимых случайных величин необходимо, чтобы вероятность того, что две из них принимают одинаковое значение, была хотя бы $1/2$? Сделайте вывод о вероятности коллизий в хеш-таблице с игнорированием коллизий.
# Пусть для хеширования строк используется полиномиальный хеш: $h(s) = (s[0]t^{n-1} + s[1]t^{n-2} + ... + s[n - 2]t + s[n-1]) \bmod 2^k$. Покажите, что в строке Туе-Морса есть много различных подстрок с одинаковым хеш-значением для любого $t$
# Пусть для хеширования строк используется полиномиальный хеш: $h(s) = (s[0]t^{n-1} + s[1]t^{n-2} + ... + s[n - 2]t + s[n-1]) \bmod r$. Предложите способ получения двух строк с одинаковым значением $h$ для заданных $t$ и $r$
# Пусть для хеширования строк используется полиномиальный хеш: $h(s) = (s[0]t^{n-1} + s[1]t^{n-2} + ... + s[n - 2]t + s[n-1]) \bmod r$. Покажите, что для достаточно большого $n$ существуют две различные строки длины $n$, которые отличаются в константном числе позиций, но имеющие одинаковое хеш-значение
# Предложите алгоритм удаления из хеш-таблицы с разрешением конфликтов с помощью открытой адресации, который не использует пометок "удалено", а действительно удаляет элемент из таблицы
# Пусть при хешировании используется разрешение конфликтов с открытой адресацией, размер хеш-пространства равено $cn$, где $n$ - число элементов. Оцените среднюю длину кластера (участка из подряд идущих занятых ячеек)
# Универсальное семейство $H$ хеш функций обладает свойством попарной независимости, если для любых двух злементов $x$ и $y$ и любых двух хеш-значений $a$ и $b$ вероятность того, что $h(x) = a$ и $h(x) = b$ есть $1/m^2 + o(1 / m^2)$ (вероятность берется по случайному выбору хеш-функции из множества $H$). Докажите, что приведенная на лекции конструкция семейства $H = \{ (ax + b) \bmod p \bmod m \}$ обладает этим свойством.
# Приведите пример универсального семейства хеш-функций для множества натуральных чисел, при вычислении хеш-функций в котором не используются операции деления и взятия по модулю. Достаточно $O(1/m)$-универсальности
# Оцените вероятность неудачи при добавлении элемента в хешировании кукушки.
# Докажите, что в хешировании кукушки добавление выполняется в среднем за $O(1)$.
# Оцените среднюю длину максимального списка при разрешении конфликтов в хешировании с помощью метода списков. Пусть для хеширования $n$ элементов используются $n$ списков.
# Докажите, что $\sum\limits_{i=0}^n h(i) = O(n)$.
# Предложите обобщение дерева Фенвика на многомерный запрос
# Пусть операция в дереве Фенвика некоммутативна. Предложите модификацию, которая позволит использовать дерево Фенвика, время на запрос обновления $O(\log^2 n)$.
# Встречное дерево Фенвика. Пусть у операции в дереве Фенвика нет обратного. Будем хранить два дерева $f[i]$ и $g[i]$, где $f[i]$ - обычное дерево Фенвика, а $g[i]$ - сумма элементов с $a[i + 1]$ до $a[i + 2^{h(i)}]$. Предложите алгоритм выполнения операций изменения элемента и получения статистики на отрезке в получившемся дереве.
# Предложите реализацию операции удаления ключа в дереве Ван Эмде Боаса.
# Предложите модификацию дерева Ван Эмде Боаса, где и минимум и максимум хранятся отдельно, но не в детях.
</wikitex>
1632
правки

Навигация